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ABSTRACT

The Avco Data Analysis and Prediction Techniques (ADAPT), (a series of
empirical data analysis programs based on the concept that pattern recognition
and regression should be preceded by a reduction of dimensionality based on
the Karhunen-Loeve Expansion), were applied to two years of historical data
recorded on the Kennedy Space Flight Center Central Heating Plant. Detection
laws capable of detecting failures in the heat plant up to three days in advance
of the occurrence of the failure were successfully derived and demonstrated.
The projected performance of these algorithms yielded a detection probability

of 90% with false alarm rates of the order of 1 per year £for 4 sample rate of

1 per day with each detection followed by 3 hourly samplings. This performance
was verified on 173 independent test cases. The program also demonstrated dia-
gnostic algorithms and the ability to predict the time to failure to approximately

plus or minus 8 hours up to three days in advance of the failure.

The ADAPT programs produce simple algorithms which have a unique possibil-
ity of a relatively low cost updating procedure. The algorithms have been
implemented on general purpose computers at Kennedy Space Flight Center and
will be tested against current data.

The study concludes that the successful demonstration of the detection and
classification algorithms demonstrates the feasibility of a new maintenance
concept based on the demand rather than a preset schedule. This approach
will save cost and avoid the possibility of introducing failures as a part of the
inspection procedure. This maintenance concept should have applicability to a
large variety of industrial and government facilities as well as the maintenance
of complex systems such as spacecraft and other large complex systems.
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1.0 INTRODUCTION

This report presents the results of a study program which demonstrated the
feasibility of a demand preventive maintenance (DPM) approach to mainten-
ance of the KSC central heat plant. This feasibility was demonstrated by using
the Avco Data Analysis and Prediction Techniques (ADAPT) to derive simple
algorithms for 1) detecting incipient failures of the central heat plant, 2) diagno-
sing expected cause of this incipient failure, and 3) determining the time remain-
ing to the occurrence of this failure. Demonstration of the feasibility of provid-
ing these algorithms leads directly to the feasibility of utilizing a demand
preventive maintenance scheme as a replacement or adjunct to the present
schedule preventive maintenance (PM) scheme,

The objective of the conventional scheduled preventive maintenance scheme is

to avoid failures by scheduling the maintenance of various elements of a complex
system in such a way that each element is inspected and/or repaired prior to the
occurrence of a failure. The DPM approach replaces this concept or at least
complements it with the idea that diagnostic measurements will be taken on the
system and used to predict an incipient failure before it occurs. When this
incipient failure has been detected. the corrective action and maintenance re-
quired to prevent this failure from occurring will be performed. Thus the
availability of ADAPT detection algorithms allows preventive maintenance to

be performed on demand rather than on a scheduled basis.

This report presents the derivation of, performance projections for, and test
verification that simple detection algorithms can be derived which would detect
approximately 90% of the failures occurring in the KSC heat plant with a false
alarm rate of approximately one per year for sample rate of one per day with
each detection followed by three hourly samplings. The potential to derive de-
tection algorithms with even greater performance is demonstrated; however,

the requirements for maintenance on the KSC central heat plant would not justify
the additional effort required to derive, verify, and implement the more com-
plex sequence of algorithms required to achieve this gain in performance.

The demonstration algorithm for detecting incipient failures was developed and
its expected performance projected from the ADAPT analysis of the learning
data. This performance was then verified by testing 173 independent test cases.
Algorithms were also developed and their performance projected to demonstrate
the diagnosis of failures in the atomizing steam boiler and in boiler No. 1. An
algorithm was developed and its performance projected for predicting the number
of hours remaining until failure of the atomizing steam boiler.

The application of these algorithms to the KSC central heat plant has been
illustrated by two scenarios. The first scenario illustrates how one would
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apply the ADAPT maintenance algorithms in a manual mode. The maintenance
algorithms derived can be utilized in this manual mode without any modifications
to the present KSC heat plant and its instrumentation by using existing computers
at KSC. The second scenario shows how these same algorithms can be used in
conjunction with an automated data monitoring system to completely automate

the entire diagnosis and analysis of the KSC central heat plant. For this case
the same algorithms can be incorporated in the computer dedicated to the moni-
toring system and the entire DPM program implemented in a completed automated
fashion.

The programs required to implement ADAPT algorithms on existing KSC comput-
ers have been developed and implemented on these computers by KSC personnel.
It is also possible to implement the programs required to make use of the opti-
mum representation to update the algorithms on existing KSC computers. This
would allow KSC to update the algorithms to account for minor changes in the
system.

The next section of this report will summarize the results and recommendations
resulting from this study. This will be followed by a description of the KSC
central heat plant and the scenarios illustrating the application of these algorithms
to the DPM of the KSC central heat plant. Section 4 reviews the ADAPT programs
and approach to empirical data analysis. The derivation and evaluation of the
detection, diagnostic and time to failure algorithms are presented in Sections 5,

6 and 7 respectively.



2.0 RESULTS AND RECOMMENDATIONS

The major result of this study was the demonstration of the feasibility of develop-
ing a predictive maintenance scheme based on the use of ADAPT derived
algorithms for the Kennedy Space Flight Center central heat plant. This system
can be implemented with the central heat plant in its present configuration using
a manual mode of data collection, transportation and submission to existing
general purpose computers, or the algorithms may be incorporated into a com-
pletely automated data retrieval and logging system. In this latter system the
entire predictive preventive maintenance scheme can be incorporated in a
maintenance computer which would automate all of the functions required to
furnish the maintenance instructions. The requirements to implement either
system, assuming that in the latter case one is already procuring the computer
and data collection system for the automated data gathering and recording system,
is the development of the complete set of diagnostic algorithms and a small
effort to develop the software and logic required to implement and interpret the
detection in diagnostic algorithms.

The feasibility of using a demand preventive maintenance system rests pri-
marily on the ability to detect incipient failure such than maintenance may be
performed on demand, that is when the system is just about to fail rather than
on a scheduled basis. The implementation of this demand preventive mainten-
ance system is considerably simplified if one can also diagnose which component
is about to fail such that the maintenance instructions can be specific. Thus the
primary requirement to establishing feasibility was the demonstration of the
feasibility of using the ADAPT programs to derive algorithms to detect incipient
failures of the central heat plant. A secondary requirement was to show the
feasibility of deriving diagnostic algorithms and a tertiary objective was to show
the feasibility of estimating the time of failure once the failure mode had been
diagnosed. Since the detection algorithm is most critical to the feasibility of
implementing the predictive preventive maintenance system, the major effort
was to demonstrate the feasibilibility of the detection algorithm. The first

step was to investigate three different types of detection algorithms. These
three types were universal detection algorithms, algorithms based on sub-
division by types of failures and algorithms based on subdivisions by natural
ADAPT grouping. Exploratory studies were carried out with an initial data

set ranging from 30 to 100 cases. The application of the ADAPT programs to
these data sets resulted in the detection algorithms whose performance are
summarized in Figure 2. 1.

Figure 2.1 presents the detection probability versus the false alarm rate for
each of the six detection algorithms studied. These performances are based
on projections of the learning data. There are many advantages to multiple
applications of the algorithm prior to initiating corrective maintenance action.
Some of these advantages include less severe requirements on the performance



of the algorithm and significantly smaller amounts of test data required to
proof test the algorithm. These multiple applications allow one to obtain false
alarm rates of the order of one per year and detection probabilities greater
than 85% for any algorithm whose single application performance exceeds a
detection probability of approximately 9 for a false alarm rate of .3, Since
this performance is adequate for maintenance of the KSC heat plant, it can be
used to separate acceptable from unacceptable detection algorithms.

Applying the above criteria to the results shown in Figure 2.1, we see that all
of the detection algorithms are acceptable from a performance standpoint. The
universal boiler #1 detection algorithm has significant advantages over all of
the other algorithms in terms of ease of application, cost of both the develop-
ment and use of the predictive preventive maintenance system, and the break-in
time required to debug this system. For these reasons the universal boiler #1
detection algorithm was selected as the best algorithm for application to the
KSC central heat plant. It must be emphasized that another algorithm might be
required or more desirable for other applications.

Since the detection algorithm represents the most critical element in the feasi-
bility of the demand preventive maintenance system, further development of
this algorithm was carried out to provide independent test results, verify the
projected performance and demonstrate the ability of the ADAPT programs to
project learning data performance to test cases. The results of these studies

are summarized in Figure 2.2 as plots of the d:tection probability versus false
~alarm rate for the 20 dimensional boiler #1 detection algorithm. Again this
algorithm is not the best performing of the universal detection algorithms;
however, taking all factors into consideration it is the recommended algorithm
for the KSC central heat plant. The solid symbols show the results of applying
this algorithm to 173 independent test cases which were not used in the original
data set, These test cases included considerable additional variation over time
of day as well as day of year relative to the original learning data. In addition
to the testing of these 173 cases, testing was also performed on 15 cases where
boiler #2 was substituted for boiler #1. This algorithm proved to be effective
in diagnosing failures of the boiler #2 configuration. Tests were also performed
on 19 cases which were taken prior to the major changes which were made in
the distribution system early in 1970. These test cases showed that this
algorithm could not account for these major changes in the distribution system.
The details of these tests are presented in section 5.4. In summary, the testing
demonstrated that the ADAPT projections of performance were valid and
therefore the feasibility of deriving an algorithm for detecting incipient failure
of the KSC central heat plant was verified.

The same exploratory analysis used to project the performance of the detection
algorithm was applied to two different diagnostics algorithms. The first was
on algorithms to diagnose boiler #1 failure versus all other failues and the
second was algorithms to diagnose the atomizing boiler versus all other



failures. The projected performance for these two algorithms is summarized
in Figure 2.3 as plots of detection probability versus false alarm rate. Examina-
tion of this figure shows that the performance of these algorithms should be
superior to the performance of any of the detection algorithms. Single applica-
tions of these algorithms will yield detection probabilities in excess of . 96 with
failure rates of one per year. This type of algorithm can only be constructed
for failure modes for which failures have previously occurred. Thus there is
always the possibility that a new type of failure will occur and this specific
diagnostics will not be possible. For this situation it is recommended that the
ADAPT programs capability to provide nearest neighbor analysis and relative
importance information be utilized to provide additional information to assist
in diagnosing the cause of the new type of failure. Algorithms should also be
derived for isolating failures to certain sub-systems of the KSC central heat
plant. In fact, the atomizing steam boiler diagnostic algorithms is actually
such an algorithm since it was developed using several different types of
failures occurring in the atomizing steam boiler subsystem. It is likely that
any failure in the atomizing steam boiler subsystem would be diagnosed even

if it were not identical to the specific failure which was used in the learning
data.

For those cases where experience with a specific type of failure is sufficient

to provide a reasonable number of cases, one might expect to be able to use

the ADAPT parameter estimation capability to estimate the time remaining

until the failure will occur. In order to demonstrate this capability, the

data on the atomizing steam boiler failures were used in the ADAPT program

to derive a time-to-failure algorithm. Figure 2.4 is a plot of the time-to-
failure as estimated by the ADAPT algorithms versus the actual time-to-failure.
Examination of this figure shows that the ADAPT algorithm is able to predict to
within approximately six hours the time-to-failure up to three days in advance
for approximately 70% of the cases.

Tables 2.1 thru 2.4 present the 20-dimensional universal detection algorithm,
the two diagnostic algorithms and the time-to-failure algorithms which were
derived as a result of this study. Each detection or classification algorithm
consists of two steps: Step 1 is an equation (i.e. dot product) to compute a number
and Step 2 is the rule for using the number., For a prediction algorithm Step 1
provides the number to be predicted. Examination of thes8e tables shows that the
implementation of these algorithms is a simple procedure which if necessary
could be implemented by hand, although it is far more convenient and reliable

to implement these algorithms on a computer. They have already been imple-
mented on the general purpose computers at KSC. Table 2.5 lists the measure-
ments which are associated with each of the index values for the algorithm
presented in Table 2.1 and Table 2. 6 lists each of the measurements which
would be associated with the indices for Tables 2. 2 through 2. 4.

The availability of these three types of algorithms allows us to implement a
demand preventive maintenance system. The recommended procedure for
accomplishing this is illustrated in Figure 2.5. The heat plant measurements
would be taken and processed through the incipient failure detection algorithm
which was presented in Table 2.1. If this algorithm produced a value greater
than zero, the system is operating normally and no action is required. If this

-5-



algorthm produces a value less than zero, an incipient failure is indicated.
This would initiate further analysis actions. The data would be recorded each
hour for the next three hours and the algorithm repeated. If three confirming
detections were achieved, then the decision would be made that an incipient
failure was to be expected. The data would then be processed through the
diagnostic and time-to-failure algorithms such as those presented in Tables
2.3 through 2.5. These algorithms would provide the basis upon which
maintenance instructions would be prepared by the maintenance decision logic.
This process could be carried out exactly as described with the present KSC
central heat plan instrumentation by using the current measurements as
recorded in the heating plant log, punching these measurements onto punch
cards and feed1ng them to an existing general purpose computer at KSC.
Alternat1ve1y, 1f the new automated data collect1on and recordmg system 1s

obtained, the ent1re procedure from the recordmg of the measurements through
the application of the algorithms and the performing of the maintenance decision
logic can be carried out within the maintenance computer required to control the
data collection.

The tests performed on variations from the learning system including the
substitution of boiler #2 for boiler #1 and the use of test cases obtained before

the major changes of early 1970 were incorporated into the distribution system have
shown that the algorithm presented in Table 2.1 is insensitive to relatively minor
changes such as the substitution for boiler #2 for boiler #1, but the major

changes associated with the major modifications of the distribution systern
seriously degraded the performance of this algorithm. This indicates that it

will be desirable to have a capability to update the ADAPT algorithms from time

to time. This updating capability also allows one to incorporate new failures

into the learning base as they occur. This can be accomplished as is outlined in
Section 3. In order to do this it'is necessary to store certain portions of the

data obtained during the normal processing. A random sampling of the passing
cases is required to keep the good class up to date. It is also desirable to keep
each of the failed cases as a future learning case. Thus, the flow diagram of
Figure 2.5 shows a random sampling of the passing cases and a complete sam-
pling of the failure cases. Again, this can be done manually or with the automated
system.. The key result of this review of the application of the procedure is -
that the ADAPT algorithms can be incorporated into a demand preventive '
maintance scheme at KSC without any additional hardware procurement in either

its present configuration or in the planned automated data recording configuration.

The successful achievement of detection and diagnostic algorithms required to
implement a demand  preventive maintenance scheme on the KSC central

heat plant implies that other base facilities at KSC, other NASA centers and in
industry in general which are made up of a large number of interrelated sub-
systems may be maintained by a demand preventive maintenance technique
such as described here. The success of this technique on this complex but
relatively unsophisticated system also indicates a good prognosis for the applica-
tion of this approach to detecting incipient failures in more sophisticated



systems such as space shuttle and other spacecraft checkout and post-flight
maintenance.

Careful examination of the ADAPT produced relative importance vector,
provided information useful to improving the scheduled preventive mainten-
ance approach and the design of the system. For example, the times to pre-
ventive maintenance which have positive values in the relative importance
vector are an indication of preventive maintenance which may be being per-
formed too often since the performance of the system is better when one is

a long time away from the preventive maintenance. On the other hand, those
preventive maintenance index values which have negative values are items
which require more preventive maintenance. This phenomena is discussed in
more detail in Section 5. 5.

The successful demonstration of the feasibility of developing algorithms for
detecting incipient failure leads to the immediate recommendation that as much
experience as possible should be obtained with practical application of this
algorithm. The best way to achieve this is to start an immediate monitoring of
the present central heating facility by applying the algorithm presented in Table
2.1 to this facility on a regular basis. Based on the results obtained in evaluating
the case where boiler #2 is substituted for boiler #1, it is also recommended that
this algorithm be applied to either boiler #1 or boiler #2 operating by themselves.

It is also recommended that the effort be initiated to develop the remaining
algorithms, optimize those algorithms and provide the proof testing of the
algorithms required to provide a complete set of algorithms for implementing
the demand preventive maintenance system on the KSC heat plant. The use
of the ADAPT programs to provide a demand pPreventive maintenance capability
for other base facilities and other spacecraft systems and spacecraft checkout
problems should be implemented. The primary requirement to accomplish this
is the availability of data which can be used as learning data to derive the
required detection and diagnostic algorithms. The results on the KSC central
heat plant provide an extremely high confidence that givena relatively complete
monitoring of most any complex system, the ADAPT programs can derive
algorithms capable of detecting incipient failures and diagnosing the cause of
this failure.
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FIGURE 2.4
COMPARISON OF ESTIMATED AND ACTUAL TIME TO FAILURE FOR THE ATOMIZING
STEAM BAILER
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3.0 APPLICATION OF MAINTENANCE ALGORITHMS TO KSC CENTRAL
HEAT PLANT

Before presenting the details of the development of the maintenance algorithms,
it is necessary to review the details of the KSC central heat plant and how the
maintenance algorithms can be used to assist in the maintenance of this system.
The next section will summarize the KSC heating plant. This will be followed
by the discussion of how the ADAPT derived maintenance algorithms can be
used to improve the maintenance of the current system without any modifications
and then how the same types of maintenance algorithms could be used in con-
junction with an automated data monitoring system to completely automate the
detection and diagnosis of out of tolerance performance of the KSC heating plant.

3.1 Description of the KSC Heat Plant

Figure 3.1 presents a schematic diagram showing some of the key features of
the KSC central heat plant. Although this figure does not include many of the
components of the system and therefore does not adequately present the com-
plexity of the system, it does illustrate the large amount of redundancy which
exists in this heating system. It will serve as a basis for describing the appli-
cation of a maintenance algorithm. For a detailed analysis of the results, it

The heat plant is basically composed of three boilers, any two of which are
sufficient to carry the full load of all three zones. Boilers No. 1 and 2 are
identical, and Boiler No. 3 is a different and smaller boiler. Normal operation
calls for atomizing the fuel using a steam atomizer gun with the atomizing steam
supplied by either one of the two atomizing steam boilers. In general, the pumps
in the system have been placed such that a pump failure can be compensated for
by valving out the disabled pump and allowing the other pumps to carry the load.

Figure 3. 2 presents a map of the buildings which are supplied hot water by the
central heat plant. This figure also shows many details of the distribution system
as of mid 1971. Major changes were made in the distribution system at the end

of the first quarter of 1970 and again in August 24, 1971, when flight crew training
building was moved from zone 2 to zone 3. In addition, other minor changes

were made periodically during the period in which the data for this study was
obtained. Although the maintenance algorithms are relatively insensitive to these
changes, the ability to simply update the algorithm offers an attractive solu-

tion to the problem which will be discussed further in Section 5.

3.2 Role of Maintenance Algorithms

The maintenance problem of this system is greatly simplified by its redundancy.
However, it is still desirable to have prior knowledge of an impending failure
and to perform the maintenance prior to the occurrence of the failure. This
has the dual advantages of allowing the failing component to be removed from
the system prior to doing more damage to other components in the
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system, and also eliminates the possibility of the failure creating an incon-
venience to the user through leakage or other damage which may occur betwéen
occurrence and time of discovery of the failure.

The current approach to this problem is to perform preventive maintenance on

a schedule which has been designed to minimize the occurrence of failures in

the system. Although this system is far superior to simply waiting until the
failure occurs and then repairing the failure, it has several major drawbacks
which include: 1) a relatively high cost associated with performing the required
inspections, 2) opportunity for additional faults to be introduced during the
mspectmn process itself, and 3) the continued possibility of catastrophic failures
occurring because the inspection process either did not result in detection of an ¢
impending failure or the failure developed too rapidly to be detected in the normal

preventive maintenanc e cycle.

maintenance ojg rnphcated systems based on ‘the 'concept of mon1tor1ng the -
performance of the system cont1nua11y to detect incipient out 6f tolerance per=—- -
formance so that corrective action can be initiated prior to the occurrence of

the failure. Clearly, this approach should be used in conjunction with a pre-

ventive maintenance (PM) program to further reduce the number of catastrophic ™

failures. This converts the classical preventive maintenance system to a de-
mand preventive maintenance (DPM) system where preventive maintenance is
performed prior to failure, but on only when required. The key question of
feasibility is the ability to detect incipient failure sufficiently prior to the
occurrence of the failure that the actual failure can be prevented. If such
algorithms can be derived then their application will eliminate the requ1rement
for disassembling the equipment to perform the inspection and thus both reduce
maintenance costs and eliminate the possibility of introducing additional faults
into the system during an unnecessary inspection. In addition, the capability
to detect incipient failures allows one to correct the failure before it occurs
even if it occurs too rapidly to be detected by a standard PM program. This
will prevent further damage and its associated repair cost to both the heating
system itself and/or to the customers facilities.

Three types of algorithms would be useful for implementing a maintenance system
such as this. The most critical algorithm which must be developed is one to de-
tect incipient failures. This a1gor1thm prov1des the Abasm information which is

required to implement DPM scheme. If one can detect in advance that this” sysfem'

is near failure, then one can initiate the appropriate corrective action. However,
this task is greatly simplified if the measurements can also supply the information
which is required to diagnosis where the impending failure will occur.

This will be accomplished by a second group of algorithms which will be applied
after the detection has been accomplished and will re-examine the measurements
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and diagnose the impending failure. This set of algorithms would then define

to the maintenance personnel what component must be removed from the system
and overhauled to prevent the failure from occurring. This time the failure
algorithm would allow the scheduling of maintenance for those failures occurring
sufficiently far in the future.

The demonstration of the feasibility of applying ADAPT derived algorithms to
the maintenance can be achieved if one shows that it is possible to derive an
algorithm for detecting out of tolerance performance of the system. Thus, the
major thrust of the present study was to investigate detection algorithms, select
a detection algorithm for verification and demonstrate through independent test
cases that such an algorithm can be derived for a system such as the KSC central
heat plant. In addition, the expected potential performance was determined as a
function of the complexity of the algorithm. The feasibility of diagnostic and
time to failure algorithms was also shown by deriving demonstration diagnostic
algorithms and time to failure algorithms, and projecting the potential perfor-
mance of these algorithms. Since these algorithms are far less critical to the
feasibility and since the performance projection has in the past proved quite
indicative of the actual performance, detail proof testing with independent test
data was only carried out for the detection algorithms.

Examination of Figure 3.1 shows that there are many operating options or
configuration in which the KSC central heat plant can operate. The major
variation in the system is probably due to different boiler combinations. Thus,
for the feasibility study, it was decided to limit the investigation to consideration
of only one boiler operating configuration. Since the feasibility of detecting out
of tolerance behavior was demonstrated for this condition, it follows that the
other boiler configurations would also be amenable to this approach. Boiler
No. 3 is significantly smaller than either Boiler No. 1 or Boiler No. 2, and it
is the only boiler which is too small to operate by itself. Thus, the number

of combinations of boiler operations which must be considered for this particular
system would be six. These six are: 1) Boiler No. 1 operating by itself,

2) Boiler No. 2 operating by itself, 3) Boiler No. 1 operating with Boiler No. 3,
4) Boiler No. 2 operating with Boiler No. 3, 5) Boilers No. 1 and 2 operating
together and 6) All three boilers operating together. The configuration selected
for this study is indicated by the cross hatched component shown in Fig. 3.1.
This configuration allows any of the components of the system to be operating
with the exception of Boilers No. 2 and 3. Clearly, this still leaves a great
deal of variation in the system configuration and, if it were impossible to develop
successful algorithms with this general configuration, one could still consider
further reducing the number of options. However, the analysis showed that it
was feasible to develop the algorithm with all of the other variations included
and thus this approach was not pursued. The details of this decision will be dis-
cussed further in Section 5. 2.
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3.3 Applications of Maintenance Algorithms with Present Central Heat Plant

The role of the maintenance algorithm in maintaining a system such as the KSC
central heat plant can be seen by examining how these algorithms could be used
with the present heat plant system. As part of the normal operation of the KSC
central heat plant, a maintenance log is kept in which pressures, temperatures,
and other pertinent measurements of the central heat plant are recorded hourly.
Figure 3.3 shows a typical log sheet recorded for August 14, 1970. The ADAPT
algorithms have been derived to make use of this data which is recorded on the
log sheet as well as other pertinent data which might effect the operation of the
central heat plant such as the current weather information of key items in the
system. When the proposed maintenance system is implemented the time since
maintenance of key items will change since the preventive maintenance will no
longer be performed on a routine schedule. However, the date at which any
maintenance is performed on every key item of the system should still be re-
corded and the time since this maintenance used where the days since PM
variables appears in the data vector. There are two differences which could
affect the performance of the algorithm. The first is that various groupings

of maintenance items are no longer correlated and the second is that one would
expect considerable increases in time between maintenance on given items. The
first of these will not significantly affect the performance of the algorithm. If

it has an affect it would be to make it more difficult to observe this affect

when deriving the algorithm. However, this has already been accomplished and
thus this aspect in the change of the character of the maintenance is insignificant.
The increased length of time between maintenance of items can be significant as
it results in an extrapolation of the affect of this maintenance. It will only be-
come significant at long times and when it is significant the ADAPT validity
criteria may detect the problem occurring. However, even in this case the
algorithm updating procedures which have been suggested will account for the
difficulty. The worst situation that could result from this change in the way

the maintenance is done is that at some time period, long compared to the normal
maintenance cycle, the performance of the algorithm could be slightly degraded
and this degraded performance would exist until the first update of the algorithm.
It should be emphasized that the degradation should be very slight since it will
only occur in a relatively small number of variables which in aggregate make a
small contribution to the decision.

Thus, the records that are now kept provide an excellent basis for beginning

the maintenance of the KSC central heat plant with or without modification of

the heat plant, the data gathering system or acquiring any new data processing
equipment. The procedure consists of: 1) taking the data which is now recorded
on this measurement log for the given hour during the day for which the system
is being evaluated, 2) combining this with the weather and other pertinent data,
3) punching this data, and 4) processing it in a general purpose computer. This
process is illustrated in Figure 3. 4. '
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The ADAPT PPM algorithms would be stored in the computer and used to cal-
culate a number which was indicative of the health of the central heat plant and
by comparing this number to a pre-determined threshold decide if a failure
would occur. If a failure is expected, the ADAPT diagnostic programs would be
used in the same general purpose computer to determine where the failure will
occur. These diagnostic programs would include the ADAPT diagnostic
algorithms and logic required to sequentially apply all the required algorithms
and print out which component will fail. As indicated in Figure 3.4, this entire
process could be combined into a single program such that when the data and
ADAPT maintenance program were entered into the general purpose computer,
the program automatically would have applied the ADAPT detection algorithm
and, if this algorithm indicated that there was no problem with the system, the
computer would simply be programmed to print out that all was well. If the
ADAPT detection algorithm indicated that a failure was near, the program
would continue to perform the diagnostics and print out the results of the diagnosis
indicating the expected location of the failure.

Clearly, the preceding discussion has been oversimplified and several important
decisions must still be made. For example, the number of times which the system
is examined is a parameter which must be decided based on the performance of

the algorithm. If the algorithm is capable of detecting failures one or more days
in advance, it would appear reasonable to apply the algorithm only once a day if
the data were manually collected and key-punched. The false alarm rate can be
reduced by repeating the application of the algorithm at hourly intervals after the
out-of-tolerance condition is first detected and corrective action initiated only

in the event that a certain number of consecutive hourly applications of the
algorithm yield agreement that the system is in danger of failure. In this mode

of operation, a false alarm rate as high as one in ten could be tolerated for
the first application and one in three for the successive applications. This
will result in an overall false alarm rate of 1 in 300, or one false alarm per
year and provide significantly improved detection. It will also allow the
verification of the algorithm to be accomplished with a significantly smaller
number of test cases. The penalty paid for this improvement is a requirement
to apply the algorithm 3 extra times every two weeks. There are many trade-
offs such as to the number of cases, the false alarm rate to be set into the
algorithm, the role of the validity criteria and the time of day at which the
system should be evaluated which should be considered. These decisions do
not bear on the feasibility of implementing the system and merely provide
additional flexibility to meet the needs of the user. For the approach to be
feasible, one must be able to achieve a final false alarm rate of less than the
order of 1 in 100 with a 75 to 90% detection probability. This performance may
be achieved either through a single application of the algorithm or through a
combination of appropriately established thresholds and repetitive application
of the algorithm. Each of these modes of operation will be discussed in more
detail in Section 5.2 after the performance of the reference algorithm has been
derived. The key result of this discussion is that the maintenance algorithms
may be applied to the present KSC central heat plant without any additional
hardware if manual data collection and key punch is used.
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3.4 *Application with Automated Monitoring System

The possibility exists that the function of keeping the KSC central heat plant
maintenance log will be assumed by an automated data monitoring system which
would consist of appropriate sensors to take the data and transmit it to a central
maintenance computer where the information would be recorded periodically.

It will be useful to consider in some detail how the ADAPT algorithm could be
incorporated in this system to completely automate the entire DPM process.
The procedure is illustrated in Fig. 3.5. Comparison of Fig. 3.5 and Fig. 3.4
shows that the procedure for the automated monitoring is in principal very
similar to that of the manual monitoring. The measurements required are the
same as in the monitoring using the manual system. However, in the automated
system the measurement of the values and transmission of the values measured
to the computer will be accomplished by the automated detection system.
Because of the simplicity of the ADAPT algorithms, the planned maintenance
computer should easily have the capability to incorporate the ADAPT detection
and diagnostic algorithms within it. Thus, the maintenance computer can con-
tain as part of its normal function the ADAPT maintenance computer program
which is illustrated in Fig. 3.6. This program would take the weather data,
and hourly measurements of the central heat plant and process them through the
detection algorithm. One attractive way of accomplishing this would be to per-
form this function once a day at some specified time. The algorithm threshold
could be set for high false alarm rate, say the order of one and ten. If the
algorithm detects that the system is not operating normally, it will initiate

continued application of the maintenance computer program until three con-
secutive out-of-normal measurements spaced one hour apart are reached.

Note this is the same procedure suggested for the manual operation in the pro-
ceeding section. Alternatively, with the automated system, the algorithm

could simply be applied every hour and '"n'" consecutive failure indications
required to initiate action. Assuming that the one hour interval between measure-
ments are sufficient to make the cases independent and an individual false alarm
rate of one in ten, this will result in effective false alarm rate of 10 n,

In addition to initiating the consecutive decision logic, the detection of an out-
of-normal condition will also initiate the collection and recording of the
appropriate diagnostic data. When the prescribed out-of-normal indications
are given by the ADAPT classification algorithms, the computer program will
instruct itself to perform the diagnostics. The diagnostics will be performed
by processing the diagnostic measurements though a series of algorithms to
separate each failure mode from all other failure modes, separate each possible
region in which a failure could occur from all other regions, perform a nearest
neighbor analysis to determine the failure most like the one presently being de-
termined, and if the specific failure mode was successfully identified to apply
the time to failure algorithm to determine when the failure can be expected.
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The results of all these diagnostic algorithms will then be processed through

the decision logic to evaluate the answers obtained for all of the algorithms

and for each set of data. Depending on how near the incipient failure is to
failures which have occurred in the past, one of more of several answers are
possible. One possibility is the prediction of the failure followed by the identi-
fication and ordering of the possible failure modes. If a specified failure was
identified, an estimate of time-to -failure may be possible. This type of output
would be expected for the more common failures where greater learning data is
available to develop the algorithms. On the other hand, for the more rare failures,
there may not be enough information to develop a time-to-failure algorithm or
possibly even to positively identify the failure mode. In this case, the output
might be simply an indication that there was an impending failure or even just
that the system was operating in unusual mode. In both of these cases, the
nearest neighbor algorithm and possibly the failure region algorithms would
give some indications which could be used to provide clues as to where the failure
should be expected.

Returning to Fig. 3.5, we see that the results of the application of this maintenance
computer program to the data collected automatically on the central heat plant

will produce the maintenance instructions indicating: 1) all is well, 2) that a
failure will occur and the diagnostics of the failures, or 3) that the operation is
unusual and some sort of prognosis concerning this operation. In addition to
deriving the maintenance instructions, the maintenance computer would still be
used to produce the maintenance log which is now produced by hand and monitor

the alarms to indicate catastrophic failure. Alarms for such items as the boiler
being out or temperature below the minimum are no different than the alarms

which are currently used and are necessary because no maintenance system,
either the current PM system or the ADAPT PPM approach will be perfect.

The final function of the maintenance computer would be to select on a pre-
scribed basis (possibly utilizing the results of the detection algorithm) cases

to be used to update the detection and diagnostic algorithms. This data would

be stored on tape by the maintenance computer and periodically this tape would
be removed and along with an algorithm update program proce ssed through one
of the existing general purpose computers at KSC to produce a new set of
ADAPT maintenance algorithms. This procedure, although not absolutely essen-
tial is highly desirable since it will significantly improwve the performance of

the maintenance algorithms with a very small cost in additional complexity and
processing. In addition, it provides the capabilities to account for the continual
changes which occur in the KSC central heat plant and distribution system. This
updating capability can be provided on any general purpose computer capable of
inverting an approximately 20 by 20 matrix. The equations required to update
the detection and diagnostic algorithms are given in Appendix E. It will be
limited to accounting for changes in the system which do not modify the form of
the data history (i.e. number of types of measurements which are used in the
algorithm). Examples of acceptable changes are such things as‘changing the
buildings on a given zone to another zone, minor changes in fuel oils, etc. An
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unacceptable change would be such as deleting a major component in the system
such as the atomizing boilers. For this latter type of change it would be neces-
sary to rederive the optimal base functions. This capability cannot be provided
on a generalized "cookbook'' basis. The derivation of the optimum function re-
quires a detail analysis of the particular problem and is different for every
problem considered.

In summary, the application of the ADAPT maintenance algorithms to the

KSC central heat plant ¢can be accomplished without the addition of any hard-
ware in either its present configuration or in the configuration with an auto-
mated data monitoring system. In both cases, a certain amount of additional
software primarily the incorporation of the ADAPT maintenance program in an
appropriate computer is required. As a part of this study, Avco has supplied
KSC with ADAPT algorithms and these algorithms have been implemented on
general purpose computers at KSC. The feasibility of the entire system rests
on the ability to obtain a detection algorithm which at least when applied success-
ively over a fraction of a day will result in an acceptable detection probability
with a false alarm rate of the order of one per year or better.
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FIGURE 3.35-
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4.0 DESCRIPTION OF ADAPT

4.1 Definition of Data Histories

The ADAPT techniques address themselves to the representation and empirical
analysis of data which appear as data histories, i.e., an indexed series of
numbers. The generality of the ADAPT programs can be seen from the variety

of applications described in References 1-15. The features of ADAPT which
make it advantageous for empirical analysis are reviewed in Appendix A, In

the present case the indexing variable is the name of the measurement. Thus,

the indexed sequence of numbers which characterize the operation of the KSC
central heat plant at any given time may be viewed as a data history or plot as
illustrated in Figure 4.1. Here we have plotted the value of the measurement

as a function of the indexing variable which is simply a number associated with
the name of the measurement. To illustrate this the name of the measurement
has been included in Figure 4.1. This figure gives a portion of the data history
for Aug. 14, 1970, at midnight. From this figure we see that no rain fell between
11:00 p.m. and midnight on Aug. 14. The temperature at midnight (i. e. mea-
surement No. 2) was approximately 82° and the average rainfall for the past
twelve hours was also zero. The average temperature from noon until midnight
was 800, This process is continued until a curve defining all of the measurements
to be analyzed is generated. This curve is defined as the input data history for
the case associated with Aug. 14, 1970, at midnight. Similar cases are generated
for each of the days and times considered in the analysis.

In general, the histories may be given in continuous (analog) form or in discrete
form. Since the ADAPT programs operate in digital computers, analog histories
are each digitized into a finite set of N numbers, so each data history is treated
as an N-dimensional vector in Euclidean space. If there are M histories, the
result is an N x M matrix of numbers.

4.2 Optimal Representation of Data Histories

With the M input history vectors defined, the first step in ADAPT is to construct
a set of optimum orthonormal base vectors. Since in general the number of
optimum base vectors to be generated will be less than the numbered required
for complete representation, there will be an error vector equal to the difference
between the history vector and its representation in the new optimum base. The
square and magnitude of this error vector is the measure of arror for each
history, and the average of these square magnitudes for all histories is the mean
square error incurred in representing the data history vectors in the new base.
For this process the definition of the word "optimum'' in the expression, "optimum
orthonormal base" is that the optimum base is that base which minimizes the
above defined mean square error incurred when one represents the learning data
histories using the new base vectors. The optimum base is chosen in an ordered
fashion, so that the first vector is the best and so on. For example, if only one
vector is used in the new base, that base vector is the one which makes the one
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vector representation error the smallest. If a second vector is used also, it

is chosen such that together with the first vector it minimizes the two vectors
representation error. This is continued for as many vectors as is necessary
or desirable for the analysis to be performed.

When formulated mathematically, this criterion requires the maximization of

a quadratic form whose unknowns are the components of one of the "optimum"

base vectors, and whose coefficient matrix is the covariance matrix of the input
histories. This problem is a classical one in linear algebra, which often appears
under the names optimum empirical orthogonal functions, Karhunen-Loeve
Expansion, or principal components analysis of a matrix. * The solutions for the
unknown vector components are the normalized eigenvectors of the covariance
matrix, and the resulting values of the quadratic form are the eigenvalues of

this matrix. Once they are obtained, they are simply arranged in order of de-
creasing size of the eigenvalues. The largest eigenvalue gives the most reduc-
tion in mean square error that can be achieved with only one new base vector
and the corresponding eigenvector is this new base vector. The next largest
eigenvalue gives the most reduction in the error that can be achieved by using

a second new base vector in addition to the first one found above, and this second
vector is the eigenvector of this second largest eigenvalue. This process can

be continued until the desired accuracy is achieved. The sum of the NR largest
eigenvalues gives the maximum mean square error reduction which can be achieved
with NR new base vectors; when adding additional eigenvalues does not significantly
increase this sum, the use of the corresponding eigenvectors as additional base
vectors does not significantly improve the representation.

A convenient measure of the degree of representation achieved with a given
number of base vectors is the sum of the eigenvalues of the vectors used,
divided by the average square magnitude of the original data history vectors.
This represents the reduction in mean square errox achieved divided by the
total error reduction possible; in statistical terms this is the percent of the
variation of the data explained by the representation used. Since information
is only conveyed by the variation in the data and the variation has the form of
an energy, the percent variation explained is also known as the information
energy. A similar measure of representation which is applied to the individual
data vectors is the ratio of the square magnitude of the data vector in the NR
base vector system to the original square magnitude of the data vector. This
provides a measure of the adequacy of the empirically derived base for repre-
senting each history, and when applied to a test history serves as the basis for

*For a detailed discussion of the Karhunen-Loeve Expansion and its advantages

in empirical data analysis see Reference 16,
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the apriori test of the validity of applying the empirical data analysis to the
test case.

For each history the NR components in the optimal system are the optimal
representation of the data in the sense described above. Alternatively, these
components may be interpreted as coefficients of the Fourier series of optimal
orthonormal functions representing the history. Thus, this vector analysis

is equivalent to the expansion of functions in a set of orthonormal functions,

of which the Fourier series is the most common example. The approach taken
is analogous to the classical solution of boundary value problems in mathe-
matical physics where the appropriate differential equation is used to define

a set of orthonormal functions to satisfy a given function on the boundary. This
boundary function is then expanded in the set of orthonormal functions defined
by the governing differential equation. In the case of empirical data analysis,
the governing differential equation is not available to define the set of ortho-
normal functions and instead the learning data set is used to numerically define
the best set of such functions or vectors.

The optimal components are used in allfurther empirical analysis. Thus,
the original M x N numbers representing M histories have been reduced to
M x NR components, plus N x NR numbers to define the optimal vector base.
Since the base system is optimal, the number of terms, NR, necessary to
give a useful representation of history is small, often of the order of 10 or
less, and the reduction in the number of numbers is usually large.

The ADAPT representation process just outlined can be clarified with the simple
example of two input histories, which has been carried through analytically in
Appendix B. For this special case the first optimal function is proportional to
the average of the two history functions, the second to their difference, a result
in accord with simple intuition. The relative sizes of the two eigenvalues is
found to depend on the degree of correlation of the two histories. This illustrates
the point that the more highly correlated information appears in the first term

of the optimal representation. Thus, the last terms inthe ADAPT representation
are the most noise-like, and dropping of terms in the ADAPT representation
results in retention of the easiest to use information.

4.3 Use of Optimal Representation for Developing Predictive Maintenance

Algorithms

Having arrived at the optimal (Karhunen-Loeve) representation, attention is now
turned to use of the optimal components for performing empirical clustering
analysis, classification, parameter estimation, extrapolation and clutter sub-
traction. For clustering analysis, one represents each history by a point in
optimal coordinates, and the degree of similarity of two histories can be defined
as the distance between their two points. If the optimal representations are
normalized, this distance is simply related to the correlation of the two histories.
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Thus, the application of visual, nearest neighbor, or other cluster identi-
fication schemes to points (i.e. data histories) of the optimal space will lead
to identification of natural clusters and algorithms to identify their members.

For classification (including the special classification problem of detection)

the same representation of a history as point in optimal coordinates is used.

A number of parametric schemes and linear non-parametric schemes which
can be applied are included in the ADAPT programs. One frequently used
scheme assigns a single number to each history in the following way: All the
histories are divided into two classes according to the sorting desired. Then
an unknown direction (vector) in the optimal space is postulated, and the pro-
jection of each history on that direction is obtained. This projection is a scalar
associated with each history. The mean of this projection for each of the two
classes is found, and then the difference between the two means. Also, the
dispersion of the projections of each class about its own mean is found. The
postulated direction of projection is determined by maximizing the ratio of

the squared distance between the mean projections to the sum of the disper-
sions of the projections. When the direction of the projection is known, the
projection of each history is determined and the range in which it falls for each
class can be found. The criterion that a given new history is sorted into a given
class is that its projection on the direction found in this way falls within the
range of projections of the learning data of that class. This linear scheme

for sorting into two classes was first suggested by Fisher, and is known as

the Fisher linear discriminant.

This and other linear schemes may be extended to multi-class problems by
repetitive application, separating a different class with each application. If
the statistics of the learning data are Gaussian the maximum likelihood tech-
nique, which is included as an option in ADAPT, may be used for multi-class
classification problems.

The ADAPT technique for constructing an algorithm to predict a physical
parameter associated with each history again makes use of the components

of each history in the optimal system. For every history in the learning
data, the known value of the parameter is written as a linear combination

of the optimal components. The unknowns are the coefficients in this linear
combination, which are taken to be the same for every history. The sum,
over all histories, of the square error of this linear representation is then
minimized to determine the coefficients. This amounts to a regression of the
parameter on the optimal components. When the coefficients are found, they
can then be used with optimal components of any new history to obtain an
estimate of the value of the parameter for that history. L

ADAPT offers a unique approach to extrapolating data histories. The learning
data used is the entire history, including the region over which one hopes to
eventually extrapolate. This learning data is first used to find the optimal
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representation for the entire history. One then determines the best coeffi-
cients by making a least square fit of the available portion of the histories
to a generalized Fourier series using the optimal orthogonal functions over
the available portion of the history and these coefficients are used to recon-
struct the entire history from the complete optimal orthogonal functions.

. The task of clutter subtraction is accomplished by first obtaining data histories
which characterize the clutter to be subtracted. These are the first few ADAPT
optimal functions obtained from data histories which were produced solely by
the phenomena whose characteristics are to be subtracted. These histories
characterize the clutter to be subtracted and are utilized as the first directions
in a Gram-Schmidt orthogonalization. The ADAPT optimization is interrupted
after the Gram-Schmidt orthogonalization and the components associated with
each of the directions determined by the clutter histories are set equal to zero
for all data histories. The ADAPT optimization is then continued through the
Karhunen-Loeve expansion, resulting in an optimal coordinate system which
does not contain the directions associated with the clutter to be subtracted.
When the histories are reconstructed using the series expansion in terms of
these optimal functions (i. e. coordinate directions) the resulting histories no
longer contain the characteristics of the clutter which was subtracted.

It is not necessary to actually find the optimal coefficients of a new history
which is being investigated to apply an ADAPT derived algorithm. The trans-
formation from the N-dimensional data vector space to the NR-dimensional
optimal vector space can be inverted and incorporated into the algorithm
vectors. Then the process of applying this algorithm to a new data vector
involves primarily the dot product or combination of dot products of this N-
dimensional data vector with an N-dimensional algorithm vector or vectors,

a rather simple procedure.

The development of maintenance algorithms for the KSC central heat plant

will require the use of both the classification and parameter estimation capa-
bilities of the ADAPT programs. Two types of classification algorithms can
be of use for the maintenance problem: 1) Failure detection algorithms and

2) Failure diagnostic algorithms. Failure detection algorithms are classifica-
tion algorithms in which one class consists of all of those data histories cor-
responding to times at which the system is performing normally and the other
class are those data histories corresponding to times when a failure will occur
in the near future. Diagnostic algorithms are required to determine which
failure mode is expected. This is obtained by performing a classification
analysis to separate each of the failure modes either from all other failure
modes or from all other cases. Finally, after one has determined that a
failure is going to occur and has diagnosed what type of failure this will be,

it would be useful to estimate the time at which the failure would occur. This
can be accomplished through the application of parameter estimation algorithms
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where the parameter to be estimated is the time to failure. Thus, both the
classification and parameter estimation capabilities of the ADAPT programs
will be utilized to develop the appropriate maintenance algorithm for KSC
central heat plant.

4.4 Evaluation of Performance and Validity

An objective of the ADAPT approach to empirical data analysis is to provide
the analyst with information regarding both the performance and the validity
of the algorithms which he develops. The performance tells the analyst how
good his algorithm is when it is applied to test data belonging to the same
population as the learning data used to derive the algorithm. The validity
criteria is a measure of how well the test data belongs to the population of
the learning data. Thus, the availability of performance data allows the
analyst: 1) to select the best algorithm, 2) to verify that the performance

of the algorithm is sufficient to accomplish the objectives, and 3) to insure
that the algorithm is based on physics and not merely a fortuitous manipula-
tion of the data. The validity criteria on the other hand provides the user
with a measure of the applicability of the algorithm to the particular case
being tested. We shall now discuss the performance measure and then the
validity criteria.

Performance Measure - Fisher Discriminant

The linear discriminant used for the analysis of the KSC heat plant data was
the Fisher discriminant. Similar performance measures may be developed
for any linear discriminant, but many details of these performance measures
will differ for the particular discriminant. Since the Fisher discriminant
was the only one used for the analysis of the KSC central heat plant and the
performance measures associated with the application of ADAPT programs
are most highly developed for this discriminant, we shall limit the present
discussion to performance measures applicable to the Fisher discriminant.

The simplest measurement of the performance of a linear classification
algorithm such as the Fisher discriminant is to examine the projection values
actually obtained when the learning and/or test data is projected on the optimum
directions selected by the linear discriminant. The ADAPT programs present
a bar chart plot of these projections for each of the learning cases, which can
be used to visualize the performance of the algorithm on the learning data.
Figures 4.2 and 4.3 present such bar charts comparing the performance of the
universal detection algorithm derived using 192 measurements and the per-
formance derived using 50 measurements respectively. Examination of these
figures shows that although they present a detail view of the performance on

a case by case basis, it is difficult to get an overall picture of how much better
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one algorithm is than the other algorithm. Furthermore, it is clear that if

one wished to compare the more than 30 detection algorithms which were
derived as a part of this study, this measure of performance would be extremely
awkward to use.

The most desirable way to overcome the twin difficulties of obtaining a con-
venient overall measure of the algorithm performance and of comparing a large
number of algorithms is to evaluate the performance of an algorithm in terms
of a single number. Since the Fisher discriminant is the result of the minimi-
zation of the ratio of the sum of the squares of the within class scatter divided
by the distance between the means of the two classes, the value of this parameter
is an excellent measure of the performance of the Fisher discriminant. In
particular, the smaller the value of this parameter the better the performance
of the algorithm. For example, for the bar chart shown in Fig. 4. 2 this
parameter, designated by the quantity z’r’/v has the value of .52, whereas
for the algorithm presented in Fig. 4.3 this parameter has the value of .41.

In Appendix C it is shown that for the special case of equal standard deviations
of the projections of each of the classes, this parameter is uniquely related to
the probability of making an error. The corresponding values of probability of
error for the bar charts shown in Figs. 4. 2 and 4. 3 are approximately . 05 and

. 005 respectively.

It is of interest to plot the performance of an algorithm as a function of the ratio
of number of cases to number of dimensions used to develop the algorithm. A
plot such as this is called a performance map and Fig. 4.4 illustrates this per-
formance for the cases shown in Figs. 4.2 and 4.3. The solid symbols in each
case represent the actual algorithm illustrated by the bar chart in Fig. 4.2 and
4.3. The open symbols represent other algorithms derived using the same data
and a different number of dimensions. This curve is particularly useful because
it allows the analyst to decide whether he may have confidence that the algorithm
is based on physics or is '"overdetermined' and merely represents a mathematical
manipulation of the data with no physical meaning. For example, consider the
situation of fitting 3 points to a third order polynomial. The third order poly-
nomial represents a three dimensional space. Fitting 3 points to this third order
polynomial is always possible and normally these "overdetermined' coefficients
have no physical basis. However. if a significantly larger number of cases,

say 30,is fitted to this third order polynomial then one knows that there must be
some physical relationship embodied in the polynomial which allows one to fit

30 cases to a third order polynomial. The same is true in any empirical analysis
and in general, this phenomenom is a function of the performance of the algorithm.
This is illustrated in Fig. 4.4 by the cross hatched area which separates random
separations from good Beparations. The random separations represent Avco's
experience with a great number of problems and show the region in which the
algorithm can perform even if there is no physical basis for the separation. Thus,
the location of an algorithm on the performance map immediately tells whether this
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algorithm displays the overdetermined character or not. It is also clear that
as one decreases the number of dimensions one moves vertically on the per-
formance map. However, at some point the decrease in dimensions will also
eliminate some information which is useful to the separation. When this occurs
the performance of the algorithm will decrease, the algorithm will move both
to the right and upward on the performance map. The objective is to get as
far to the left on the performance map as possible while satisfying the require-
ment of remaining a significant distance away from the random separation's
region. Thus, the performance map has been a useful tool for comparing
different algorithms and for carrying out the analysis required to determine
the dimensionality at which an algorithm should be produced.

Although the value of the Fisher parameter or the performance map make
excellent performance measures for comparing different algorithms, they

do not directly display the trade-off between detection probability and false
alarm rate. It is shown in Appendix C that for the special case where the
standard deviation of both classes are equal, the performance map can be
related directly to the trade-off curve between detection probability and false
alarm rate. However, this trade-off curve produced for any given algorithm

is another excellent way to compare algorithms since it provides a pictorial
display of this trade-off. Figure 4.5 presents these trade-off curves for the
same algorithms shown in Figures 4. 2 thru 4. 4. The ordinate on this plot is
the detection probability, that is probability that an out of tolerance condition

of the KSC plant will be detected by the algorithm. The abscissa is the false
alarm rate for the probability that the normal period of operation will be called
abnormal. It is clear from examination that Figure 4.5 that the trade-off be-
tween the detection probability and false alarm rate for each of the algorithms
is shown very clearly. In addition, this presentation clearly shows the relative
merits of the algorithms being prepared. Thus, once the dimensionality of an
algorithm has been selected, this detection probability versus false alarm rate
curve provides the most convenient method of comparing algorithms. In general,
through the remainder of this report when an algorithm's development is being
discussed its performance will be displayed on a performance map. When an
algorithm has been developed and is being discussed for use and testing, its
performance will be displayed on a detection probability versus false alarm curve.

Performance Measure - Parameter Estimation

The problem of evaluating the performance of a parameter estimation or re-
gression algorithm is quite similar to that of estimating the performance of a
classification algorithm. The simplest display in the performance of estima-

tion algorithm is a plot of the estimated value of the parameter versus the actual
value of the parameter. Fig. 2.4 shows such a plot for the estimated time to
failure for the atomizing steam boiler. Thus, the functional role of this presenta-
tion of the regression results is very similar to that of the bar chart for the
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classification results. It shows the performance of the algorithm on each case
extremely well. It also gives an excellent graphical qualitative picture of how
well the algorithm is working. But like the bar chart it is an awkward presenta-
tion for comparing a large number of algorithms or for the analysis of dimen-
sionality to be used in developing the algorithm. These two functions are again
better performed on a performance map.

As in the case of classification, the development of a performance map for
parameter estimation requires that one have a single number to evaluate the
performance of the al gorithms including such things as correlation coefficient
or standard deviation of the error. Inthe ADAPT programs the measure of
performance is the ratio of the standard deviation of the error resulting from
the application of the algorithm divided by the variance (i.e. the standard de-
viation of the error when one uses the mean as the estimate of the parameter).
This ratio is designated by the symbol J~ RAT.- Again, the smaller the value
of this ratio, the better the performance of the algorithm. Thus, the per-
formance map shown in Fig. 4.6 for the time to failure algorithm illustrated

in Fig. 2.4 is a plot of rf-{AT versus the ratio of the number of cases to
number of dimensions. Here again, the ratio of the number of cases to number
of dimensions plays the same role as it did in the classification algorithms.
Again, experience with previous empirical problems has allowed the inclusion
of an experience factor for the probability that the algorithm will be based on
the physics of the problem and not merely a random separation. Thus, the
regression performance map shown in Fig. 4. 6 can again be used both to compare
the performance of algorithms and as a tool for the analyst while developing the
algorithms.

Validity Criteria

The ADAPT programs also provide validity criteria which are based on the

ability of the optimal functions derived from the learning data to represent the

test data. These validity criteria are identical for and applicable to all ADAPT
classification prediction and clustering algorithms. The validity criteria essen-
tially makes use of the data vector's geometric property of length. The length

of the learning data vectors may be calculated in the original data space and then
compared with the new length when the learning data is represented in the optimal
ADAPT space. The ratio of these two lengths is defined as the validity parameter
(Q). The validity parameter can be calculated for the test data vector by computing
its length in the original data space and the optimal ADAPT space. If the test data
vector's length is reduced significantly more than that of the learning data vectors
when it is represented in the optimal space, this is indication that the test data

is from a different population than the learning data used to develop that algorithm.

The major problem in applying this validity criteria is that of establishing the

threshold between valid and invalid cases. The correct way to establish this
criteria requires the knowledge of the distribution function of the validity parameter

-43-



for both the population of valid cases and invalid cases. It is clear from some
rather obvious limits such as the fact that the validity parameter must lie be-
tween zero and one and that its standard deviation at both of these end points
must be zero that the distribution function is definitely non-Gaussian and, in
fact, is not satisfied by any of the well known classical distribution functions.
Thus, one must experimentally develop the appropriate statistical properties
of each of these populations. It is relative easy to get a reasonable approxi-
mation to this distribution function for the population of the valid cases by plotting
up and examining the validity parameters for the learning data. However, itis
considerably more difficult to find an estimate of the statistics for the validity
parameter of the invalid cases. In fact, the only approach available for this

at present is to make some reasonable assumption for a threshold such as the
minimum value observed in the learning data or the mean value in the learning
data minus some quantity such as the standard deviation, evaluate a series of
test data against this criteria and then re-examine the performance on the test
data and determine the conditions for which the results are consistent. This
will be illustrated in more detail in Section 5.4 where the heat plant failure de-
tection algorithm performance is evaluated.

The validity criteria for the ADAPT extrapolation of data histories is based

on the fact that the learning data is now identical to the first portion of the data
histories and was not used to make the data base. However, the data which
was used to make the base also contains the portion covering the identical
range of the indexing variable as the learning portion of the data history to be
extrapolated. Thus, one may compute the RMS error for the first (i.e. known)
portion of all the learning data histories. One may then take the average of
this, finding the average RMS error for all the learning data histories and also
the standard deviation 0"’@ of these RMS errors. One may then compare the
RMS error of this known range of the test case with the average and standard
deviation of the RMS error for the corresponding region of the learning data
and calculate the confidence in the validity of the extrapolation. For example,
if the RMS error of the test cases falls outside of the range of the average RMS
error for the learning data plus or minus its two-sigma value, one has only 5%
confidence that the extrapolation will be accurate to the degree indicated by the
performance estimate based on the learning data.

The next sections of this report will present the detailed results of the repre~

sentation, detection, diagnostics, and time to failure estimates derived for the
KSC central heat plant using the methods which have been outlined above.
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FIG. 4.1 - CONSTRUCTION OF DATA HISTORY FROM DISCRETE MEASUREMENTS
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FIGURE 4.2 - PROJECTION OF LEARNING DATA ON SEPARATION DIRECTION FOR
SEPARATING INCIPIENT FAILURES FROM GOGD CASES USING 192
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FIGURE 4.3 - PROJECTION OF LEARNING DATA ON SEPARATION DIRECTION FOR
SEPARATING INCIPIENT FAILURES FROM GOOD CASES USING 50
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5.0 DETECTION ALGORITHMS

The implementations of the ADAPT derived maintenance algorithms into a
demand preventive maintenance (DPM) system described in Section 3 is
only feasible if one can derive an algorithm which will detect incipient failure
of the system. This section will present the demonstration of the feasibility
of accomplishing this by applying the ADAPT programs to the KSC central
heat plant data. To insure success in obtaining detection algorithms several
different avenues were explored and each of these avenues shall be reviewed
in this section. Many successful detection algorithms were derived. The
selection of the algorithm to be used for the final demonstration was based

on the algorithm performance, complexity and the complexity of the software
required to implement a complete set of algorithms of the selected type. The
algorithm selected was the universal detection algorithm for boiler No. 1.

This algorithm was then optimized for maximum performance and tested using
approximately 200 independent test cases. All of these results are discussed
in Sections 5.1 thru 5.4. Section 5.5 presents a discussion of the implications
of these results to preventive maintenance. '

5.1 ADAPT Representation of Heat Plant Data

The power of the ADAPT approach to data analysis is primarily due to the
derivation of the optimum representation for any given set of data prior to
developing the empirical algorithms. The representation obtained by pro-
cessing through the ADAPT programs is correct for any set of data having

the same number of independent variables or indexing points as the data
histories used in the learning data. Itis an optimum representation for that
subset of this data for which the learning data is a good sample of the population
statistics. Thus, it is necessary to develop a new base whenever the number

of index variables used for the analysis is changed and it is desirable to de-
velop a new base whenever the distribution of subclasses in the learning data

set is drastically changed. Every time one changes the number of measure-
ments used in the analysis, it is necessary to develop a new base to use the
smallest number of measurements in the ADAPT processing. Furthermore,

if one drastically changes the approach to achieving the detection algorithm, such
as changing the approach from deriving a universal detection algorithm to
deriving an algorithm for subgroup on the scatter plot, it is desirable to de-
velop a new base. It is also desirable to use a specific diagnostic base when
developing the diagnostic algorithms. For these reasons a relatively large
number of bases were developed in the course of this study both for the detection
algorithms and the diagnostic algorithms.

The methodology of developing the base, the general results displayed by the
base and the methods of using these results are essentially identical regardles:
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of the details of the base. This section shall present a detailed review of
only one base. The initial base developed in this study was the 29 case
exploratory base using 190 independent variables. This base was used for
the initial exploratory analysis which will be described in Section 5. 2. At
the conclusion of the exploratory analysis it was decided to add two more
variables to the candidate variables and to use a basic 100 case data set as
the learning data for the detection algorithms. This data set was then used
to develop a new base with 192 measurements and initial studies were per-
formed on this base which eventually lead to the reduction from 192 variables
to the 50 most important variables or indexing points for detecting incipient
failure. This 50 point base is the base which was used in the final analysis
and is most relevant to the universal detection algorithm which has been
selected for detail evaluation. The details of this base will be used to illus-
trate development of the ADAPT representation.

The 50 variables selected for the final detection algorithms are listed in

Table 2.5. The scheme for configuring the value of the measurements

associate with each of these variables or measurements into a data history
suitable for processing in the ADAPT programs is presented in Section 4.

This scheme was schematically illustrated in Fig. 4.1. Figure 5.1 presents

the corresponding data vector for August 14, 1970, as plotted out in its entirety
by the ADAPT programs. Figure 5.1 presents the data history for all 50 of

the variables presented in Table 2. 5. Although the names are not specifically
listed on Figure 5.1 as they were on Figure 4.1, they correspond to the numbers
or index shown in Table 2.5. For example, referring to Table 2.5 we see

that indexing variable No. 30 is the number of gallons of oil used in the atomizing
boilers. Referring to Figure 5.1 we see that in August 14, 1970, the number

of gallons of fuel used in the atomizing boiler was 100.

The usual procedure in deriving the optimum representation with the ADAPT
programs is to first subtract the average of all the data histories from each

of the data histories to provide data histories having a zero mean. Figure 5.2
presents the average data history for all 100 learning cases used to develop

this base. When these data histories were processed through the ADAPT pro-
grams, it was found that all the information obtained could be represented by

50 optimum functions. Figure 5.3 presents the amount of information presented
as a function of the number of optimum functions used. For example, if one uses
5 optimum functions, Figure 5.3 shows that the fifth optimum function contributes
almost 5% of the information contained in the total data set and the upper or
cumulative curve on Figure 5.3 shows that the first five optimum functions

taken together provide approximately 88% of the information contained in the

data set.

Figures 5.4 and 5.5 present the first two optimum functions for representing
this data. The indexing variable for these optimum functions is again defined

-52-



by Table 2.5. Thus, examination of the first optimum function shown in
Figure 5.4 shows that variables No. 6, 9, 10, 15, 16, 20, 21, and 25
dominate the variation. In fact, reference to Figure 5.3 shows that these
eight variables account for almost 57% of the variation in the data. Reference
to Table 2. 5 shows that these variables are: Boiler No. 1 operating pressure,
steam pressure for atomizing boiler A, steam pressure for atomizing boiler
B, return temperature for zones 1 and 2, the 12-hr. average of the steam
pressure in atomizing boiler A, the 12-hr. average for the steam pressure

in atomizing boiler B, and the 12-hr. average of the supply pressure,
respectively. Since variables 9, 10, 20, and 21 are dominant, one may
interpret the first optimum function as being dominated by the definition of
which of the two atomizing steam boilers (see Figure 3.1) are operating at
any given instance. The next most important factor in determining the first
optimum function is clearly related to the load on the system since it appears
to be dominated by the boiler operating pressures, supply pressures, and

the zones 1 and 2 return temperatures.

Examination of the second optimum function shown in Figure 5.5 shows that
considerably more variables are important to this optimum function. The

most important variables for defining the second optimum function are the
boiler operating pressure, the amount of fuel oil used, the return temperature
of the three zones, the 12-hr. average of the fuel oil used, the 12-hr. average
of the supply temperature and pressure and the rainfall over the past three
days. Realizing that the collection of the rainfall in the various drainage ditches
and manholes throughout the distribution system is a major contributor to the
load on the system, we see that the second optimum function is almost entirely
determined by how hard the central heat plant must work.

Before continuing with a physical interpretation of the representation, it will

be useful to clarify the meaning of these optimum functions by illustrating their
use in a generalized Fourier series representation. Consider the reconstruction
of the data history shown in Figure 5.1 using these first two optimum functions.
Since all of the optimum functions are orthogonal functions, the coefficients for
the generalized Fourier series may be obtained by the classical formulation
which is simply a dot product of the corresponding optimum function with the
data history. Given the set of coefficients corresponding to any data history,
one can reconstruct the data history as follows. The first step is to take the
first coefficient and multiply it times the first optimum function and add this

on a point by point basis to the corresponding value of the average input

vector (Figure 5.2) to obtain the one term reconstruction. Cne then takes

the second coefficient and multiplies it times the second optimum function and
adds the result again in a point by point fashion to the one term reconstruction
to obtain the two term reconstruction. The two term reconstruction is shown in
Figure 5.6, when it differs by more than the line thickness from the original
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reference presented in Figure 5.1 the reference history has been included

on the figure as a dotted line. Comparison of the two term reconstruction
(the solid line) with the reference history shows that for this case the
reconstruction matches extremely well with only two terms. For this parti-
cular case, 62% of the information contained in the original data history is
contained in this reconstruction. Comparing this with the information energy
plot shown in Figure 5.3, we see that this history is somewhat below the
average of 72% and thus the two term representation represents a below
average reconstruction. The process may of course be continued by using
higher order terms in the series and the results of this continuation for the
five term and ten term representations are presented in Figures 5.8 and 5.9
in a format similar to that of Figure 5. 6. Representations for the five and
ten term reconstructions are 85% and 95%, respectively. Comparison of
these representations with the average representation for five terms show that
this reconstruction is slightly less accurate than the average reconstruction.
In the case of the ten term reconstruction, it is a very typical match. As
would be expected,the agreement between the reconstruction and the actual
history improves as the number of terms used is increased. Furthermore,
it is interesting to note that the most difficult portion of the history to recon-
struct appears to be variables from approximately 31 thru 49. Reference to
Table 2.5 shows that these variables are the maintenance records.

Since the optimum functions used to reconstruct all of the data histories are
identical, they can contain no information regarding the differences between
any of the cases. Thus, the entire physics of the problem must be included

in the coefficients of the optimum representation. Thus, Figure 5.3 states

that the two numbers corresponding to the first two coefficients for each of

the histories in the learning data set represent 72% of the information which
can be learned from this data set. Since two numbers can be conveniently
presented in a two dimensional presentation, it is useful to examine this best
possible two dimensional presentation. Figure 5.9 presents a scatter plot

of these two numbers. The abscissa on Figure 5.9 is the coefficient of the
first term in the generalized Fourier series representation of each of the cases
shown. The ordinate is the coefficient for the second term in the Fourier gseries
representation. The one's on this figure represent those cases taken during
normal operation of the central heat plant and the two's represent those cases
taken just prior to a failure in the central heat plant. Consider the case repre-
sented by the two located in the upper right hand corner of this figure. For

this case, one would reconstruct the two term history by multiplying 205 times

each of the values in Figure 5.4 adding these numbers to 53 times the value of
each of the indexing variables in Figure 5.5 and sum the result of these two pro-
ducts with the average vector shown in Figure 5. 2. Examination of this figure
immediately shows that in general the easiest to represent 72% of the information
does not contain enough information to make the desired classification algorithm
to separate incipient failures from non-failure cases.
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Three groupings of cases can be seen on the scatter plot shown in Figure
5.9. The meaning of these groupings can be understood by recalling

the physical interpretation of the optimum functions presented in the dis-
cussion of Figures 5.4 and 5.5. Since the first optimum function is pri-
marily concerned with which atomizing steam boiler is operating, the
separation in the first coefficient is due to this factor. That is, those

points with positive values of the first coordinate (abscissa) are operating
on steam boiler A and those with negative values of the first coefficients

are operating on steam boiler B, Figure 5.3 shows that approximately

50% of the entire variation in the data is due to the inclusion of both steam
boiler A and steam boiler B cases in the learning base. Thus, the problem
of deriving the detection algorithms could be greatly simplified by only using
one of the two steam boilers. Including all seven of the possible boiler con-
figurations in the analysis would add a great deal of additional irrelevant
variation to the problem and therefore the division of the problem into seven
similar problems to cover the various configurations of the boilers

has probably improved the algorithms performance at the expense of require-
ing additional algorithms to implement the system. Although further simpli-
fication would be introduced by dividing it into 14 instead of 7 problems and
only considering a single steam boilers operation, this further reduction
would probably limit the number of learning cases for any configuration to
the point that for the present data set, it would be extremely difficult to de-
rive the diagnostic algorithms, although it appears that one should be able

to derive detection algorithms. Since the performance of the algorithm
including the variation from steam boiler A to steam boiler B will be shown
to be satisfactory, it is recommended that the detection algorithm be de-
veloped including this additional variation.

The variation in the second coefficient (i.e. the ordinate) was due almost
entirely to how hard the system was working. The larger the value of the
second coefficient the harder the system is working. Thus, points located
near the bottom of Figure 5.9 represent cases where the load is very light
and points located near the top of Figure 5.9 represent cases where the load
is very heavy. It should be recalled that the first optimum function presented
in Figure 5.4 is dominated by the definition of which atomizing steam boiler
is operating; however, that function also contains information regarding the
load. In fact, those parameters regarding the load such as the return tempera-
ture of zones land 2 and the operating pressure of the atomizing boiler had
opposite signs to the corresponding values in the second optimum function.
Thus, as the load is increased a data point moves rapidly to the top of Figure
5.9 and slightly to the right. The two groupings of learning data having nega-
tive values of the first coefficient represent data histories having different
loads but operating with atomizing steam boiler A. Such groupings would be
created by separation between cold and hot days or between data histories
taken in the rainy season and not during raining season.
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In addition to providing the scatter plots of the first two coefficients, the
ADAPT programs also provides scatter plots of any two coefficients desired
by the analyst. It is standard procedure not only to examine these first two
plots, but to examine the remaining combinations. This is done to reveal
serious errors in the data recording or keypunching and the presence of any
unusual case or group of cases. An example of this occurred on the base
which has just been described. Figure 5.10 shows the scatter plot of the
coefficients of the fourth and fifth optimum functions for this base. Exam-
ination of this plot shows that all of the cases are grouped in the upper right
hand corner except for a single case which is in the lower left hand corner.
When this phenomenon occurs it is an indication that the isolated case is a
very unusual case and, therefore, investigation is required to determine
whether the unusual nature of the case is based on a physical characteristic
of the case or is due to an error in data recording or keypunching. This
review can be assisted by the examination of the optimum functions associated
with the coefficients used on the scatter plot in which the case is unique.

In this case, the two optimum functions of interest are the fourth and fifth
which are shown in Figures 5.11 and 5.12. Examination of these two figures
shows that the important variables to the scatter plot shown in Figure 5.10

are the number of gallons of fuel used, the return temperature for zone 2,

the 12-hour average of the supply temperature and the three-day rainfall. The
strongest of these is the 12-year average of the supply temperature. Thus, the
first step is to review these variables for the case represented by the point in
the lower left hand corner of Figure 5.10. Review of the data runs which pro-
duced this base shows that point to be the case associated with 2400 hours on
April 22, 1971. This was the case associated with the incipient failure of the
atomizing steam boiler which occurred at 9:00 on April 23, 1971. Careful
examination of this case shows that in the process of transforming the data
from the original data sheets to the keypunch instruction sheet, a subtraction
was not carried out. This resulted in an error of a factor of approximately 30
in the value of this measurement. Clearly, this case must be corrected. There-
fore, this case was deleted and replaced by a correct case, and the base was
rederived. ‘

A single erroneous case does not drastically effect the optimum base for
representing the data. This can be seen by comparing the information
energy and the optimum functions associated with the corrected base

with the corresponding information energy and optimum functions for

the original base (Figures 5.3 thru 5.5). The corresponding information
for the new base is presented in Figures 5. 13 thru 5.15. The information
energy and first optimum function are essentially identical and thus

the physical interpretation discussed earlier does not change. Although
at first glance the second optimum function presented in Figure 5.15 looks
different from that presented in Figure 5.5, this is not the case. Care-
ful examination of these two figures will show that Figure 5.15 is actually
the mirror image of Figure 5.5. Since the ADAPT programs are dealing
with directions in the optimum space, the sign associated with these direc-
tions has no effect on the optimality of the base. The apparent difference
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between Figures 5.5 and 5.15 is simply due to the program arbitrarily
selecting different sign for the second function. The only effect of this

change is to make a corresponding change in the coefficient associated

with each history. Thus, in the new base the second coefficient of a history
will be the negative of its coefficients in the original base. Clearly, the degree
of representation as well as any of the physical information contained has not
been altered by this change.

This change manifests itself in the scatter plot by reversing the sign associated
with the physical interpretation. Thus, the scatter plot for the new base shown

in Figure 5.16 is essentially identical to that shown in Figure 5.9 except the

sign of the second coefficient has been changed. Thus, the two groups occurring
near the top of Figure 5.9 now occur near the bottom of Figure 5.16. The one
group occurring near the bottom of Figure 5.9 occurs near the top of Figure 5.16.
The reader can verify that the discussion of the physics associated with the optimum
function presented in Figure 5.5 is identical to the physics which would be inferred
from Figure 5.15 except that the effect of the sign of the ordinate of the scatter plot
is reversed.

The effect of correcting the erroneous case is fairly significant for the

fourth and fifth optimum functions which are strongly influenced by the 12-

hr. average of the supply temperature. The effect on the higher numbered
optimum functions has simply been to shift these functions down by one
position in the series since with this error corrected the variation which
previously required both the third and fourth optimum functions for repre-
sentation now requires only a single optimum function. This is illustrated

by Figures 5.17 and 5.18 which present the seventh optimum function for

the original base and the sixth optimal function for the new base, respectively.
Examination of these two figures shows them to be essentially identical. This
result is typical of all the optimum functions beyond the fifth term. Figures
5.19 thru 5. 22 presented third, fourth, eighth, and nineteenth optimum functions
associated with the corrected base. The reader can easily verify that the third
optimum function is essentially associated with fuel consumption, the fourth
optimum function corrects the fuel consumption for the rainfall, sixth optimum
function deals with the oil consumption of the atomizing steam boiler, the .
eighth optimum function deals with the difference between the 12-hr. average
and the instantaneous fuel rate, and the nineteenth optimum function defines

a low load condition.

Considerable analysis such as that which has been discussed above can be

carried out on each base developed in support of this program. This analysis
would lead to considerable understanding of the important factors and mechanisms
controlling the operation of the KSC central heat plant. The preceding discussion
has given an example of how the representation can be used to get a better under-
standing of the system, and to provide an insight to assist in making decisions
regarding the development of the detection algorithm. It is only this latter result
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of this analysis of the representation which is pertinent to the specific objectives
of this study. Thus, a complete analysis of the representation considering the
higher order terms for the base presented here, and the other bases developed
as a part of deriving detection and diagnostic algorithms is beyond the scope of
this study.

The major conclusions with respect to developing the detection algorithms
resulting from this analysis of the representation are: 1) more than two terms
will be required to develop a detection algorithm, 2) if the derivation of the
detection algorithm proves too difficult, it can be significantly simplified by
considering only one of the atomizing steam boilers in the derivation of the detec-
tion algorithm with the penalty of increasing the number of detection algorithms
required, 3) further reduction in the irrelevant variation in the data can be
achieved by limiting the algorithm development to certain load conditions,

4) it is probably necessary to develop separate detection algorithms for each

of the seven boiler configurations, and 5) the case associated with April 22,
1972, at 2400 hours should be omitted due to an error in keypunching the data.

5.2 Exploratory Analysis

Exploratory analyses were carried out to: 1) select preprocessing to be used
for the remainder of the detection algorithm development, 2) project the ex-
pected performance of a final algorithm, 3) illustrate the effect of the reduction
of the number of measurements on the performance of the algorithm, and

4) to estimate the performance which could be obtained from each of several
approaches to deriving the detection algorithm. This section will review the
primary results of each of these exploratory investigations.

Preprocessing

The ADAPT programs offer the user several options for preprocessing the data
prior to selecting the optimum representation. Certain preprocessing options
can be selected based on knowledge of the problem. The preprocessing options
considered in developing maintenance algorithms for the KSC central heat plant
include the subtraction of the average data vector prior to processing through
the representation program and the equalization of the variation in each of the
measurements. The subtraction of the average from each data history has the
advantage of producing data histories with zero means and of minimizing the
irrelevant variation. Except for problems involving extremely unusual situations
such as clutter subtraction, a subtraction of the average vector from each data
history normally results in easier derivation and therefore better algorithms.
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The variation associated with each of the measurements used for the present
analysis was approximately equalized by multiplying the measurement value by

a constant Such that the maximum values of the measurement fell within the same
order of magnitude. In some cases, this was also achieved by subtracting
appropriate constants from each measurement. Although programs are available
within the ADAPT system to provide exact equalization of the variation, the
application of these programs can only be justified relative to the simple approach
used here when it is known that each variable will have approximately equal
influence on the representation. Since this is not the case for the present
analysis, the more approximate equalization approach was utilized.

The ADAPT programs also provide options to increase or decrease the significance
of spikes in the data histories by preprocessing each variable by either taking

its logarithm or raising ten to the power of that variable. These processes may
also significantly affect the number of terms required to achieve a given repre senta-
tion. The ADAPT programs also include preprocessing options to carry out a
normalization such that the magnitude of each data history, i.e. data vector, is
unity.

Raising each variable to the power of ten would accentuate the uncertainty associated
with the lack of knowledge concerning the proper variation which should be
associated with each of the measurements. Thus, this preprocessing option can
also be rejected. However, the log preprocessing and the normalization pre-
processing cannot be rejected on an apriori basis. For this reason the initial 29
case exploratory data set made up of 190 variables was utilized to investigate the
effect of the log and normalization preprocessing on the performance of the algorithm.
The results of this investigation are summarized in the performance map presented
in Fig. 5.23. The reference processing without normalization or log preprocessing
is shown by the solid line connecting the circles. The effect of normalization is
indicated by the solid line passing through the square symbols. As can be seen

the effect of normalization can be expected to be very small, and for this particular
case, a slight reduction in performance is observed. Based on these results it

can be concluded that normalization will probably have an insignificant effect on

the performance of the detection algorithms. Noting that the normalization has the
disadvantages of slightly increasing the complexity of applying the algorithm and
significantly increasing the complexity of interpreting the physics associated with
the algorithm, the decision was made not to normalize the data.

The effect of taking the logrithm of each measurement before processing it through
the ADAPT programs is shown by the solid line passing through the triangles.

This algorithm has significantly poorer performance than the reference case, and
in fact, has such poor performance that one cannot have high confidence in the
physical basis of that algorithm. For this reason the log preprocessing was also
rejected. Thus, for the remainder of this study, the data used will neither be
normalized or nonlinearly distorted and the only preprocessing used will be to
subtract the average data history from each data history prior to processing and

to approximately equalize the variation associated with each of the measurements
by multiplying them by an appropriate constant.
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Projected Performance

The performance map shown in Figure 5.3 can also be used to estimate the
expected performance of the algorithms on test cases. The process of estimating
this performance is illustrated by the dash line which proceeds nearly vertically
from the position of the algorithm on the performance map. The slope of this
line is based on experience and represents the decrease in performance which
will be observed due to the partial overdetermined nature of any algorithms which
are near the cross hatched line on the performance map. Experience has shown
and analysis has confirmed (see Appendix C) that when the ratio of number of
cases to number of dimensions exceeds approximately six, one can expect that
there will be no further significant degradation and performance as one moves
vertically on the performance map without rejecting useful information. Thus,
these exploratory studies indicate that it should be possible to develop a universal
detection algorithm with a performance parameter (J0/v) of approximately . 67.
This corresponds to a probability of error between .05 and . 1.

Effect of Number of Measurements Used

The same exploratory data base which was used to evaluate preprocessing was
used to illustrate the effect of reducing the number of variables on the performance
of the algorithm. The reduction in variables is achieved by examining the relative
importance vector for the algorithm and only retaining the most important
variables as defined by this relative importance vector. The results of this
analysis are also summarized in Figure 5. 23.

The solid symbols show the performance of algorithms developed on the original
190 dimensions, the most important 74 of these 190 measurements, the most
important 10 of the 74 measurements, and the most important 5 of the 10 measure-
ments. As can be seen by examination of this performance map these algorithms
were developed at considerably different values of the ratio of the number of

cases to the number of dimensions, and therefore, a direct comparison of their
performance might be misleading. In this particular case, the direct comparison
of the performance would give the same qualitative results; however, to obtain
meaningful quantitative results the comparison should be between the projected
performance of these algorithms. Thus, following the dash lines for the algorithms
being considered, one may calculate the projected performance in the same

manner as was done for the reference 190 dimensional algorithm. Note that for
this 190 measurement algorithm, the projection from either the 13 or 14
dimensional cases is identical. This simply means that in reducing the number

of dimensions from 14 to 13 no significant information was discarded. The

fact that the 10 measurement algorithm projects to the same point is purely
coincidental. Thus, the projected performance parameter for these four algorithms
are: .67, .48, .67, and 1.2, respectively. These values correspond to
probability of error of approximately .05, .01, .05, and . 2.
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As pointed out in Section 4, any value of this performance parameter can be
associated with a performance trade-off curve of detection probability versus
false alarm rate. This curve is also convenient for illustrating the effect of

the number of measurements used and is shown in Figure 5.24. Symbols on this
figure are identical to those used on Figure 5.23 and correspond to the same
algorithms. Figure 5.24 also lists the ten most important variables which were
used in the ten variable algorithm. The first five of these ten are the variables
which were used in the five variable algorithm. Figure 5. 24 clearly shows that
initially the reduction in the number of measurements used results in significant
improvement in the performance of the algorithm. The improvement in the
performance of the algorithm when reducing from 190 to 74 variables is most
likely due to the fact that the majority of 116 variables which were deleted apparently
contributed very little information to the classification problem and a great deal
of confusion to the data analysis. This process was continued and the relative
importance vector for the 74 algorithms was examined and the 10 most important
of these variables retained and used for the 10 variable algorithm. The performance
of the 10 variable algorithm is significantly reduced relative to the 74 variable
algorithm. This is due to the fact that the 64 variables which were discarded

in this reduction contained enough significant information relative to separating
failed from unfailed cases to overcome the confusion loss resulting from using the
larger number of variables. This implies that the optimum number of variables
to be used for the analysis of the heat plant lies somewhere between 10 and 190.
Continuation of the process to 5 variables clearly would be expected to lead to
further reduction in performance and Figure 5. 24 verifies this further reduction.

Type of Detection Algorithm

There are several types of detection algorithms which might be considered as

the basis for the demand preventive maintenance system for the KSC heat plant.
The easiest algorithm to use but most difficult to achieve would be a universal
detection algorithm which would predict the presence of an incipient failure
regardless of which boilers were operating, the type of failure, load on the
system or mode of operation. The next easiest algorithm to implement would

be effectively a series of universal detection algorithms limited to a specific
boiler configuration. For example, the universal boiler-1 detection algorithm
which is valid for any operating condition or load provided only boiler No-1 is
operating. Clearly, a similar algorithm must exist for boiler 1 operating in
conjunction with boiler 2, etc. For the KSC central heat plant it was shown in
section 3 that there are a total of seven such detection algorithms required. It
might also be possible to develop algorithms which would detect only specific failure
modes. For example, a detection algorithm might be developed to detect incipient
failures of the atomozing steam boiler. Again the variation should be reduced

and the data used to derive this algorithm and thus the derivation should be somewhat
simplified. If the algorithm worked exclusively with respect to detecting only

the failure on which it was developed, there would not be any need for diagnostic
algorithms with this type of detection algorithms. However, it is unlikely that
this algorithm would work in this manner since many failures look sufficiently
similar that the algorithm developed for detecting one particular type of failure is
very likely to detect other types of failures also.
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A final method of subdividing the cases to reduce the amount of variation which
must be handled in deriving the detection algorithm is to use the ADAPT scatter
plot outputs to define natural groupings which have relatively small amounts of
variation within the groups. Figure 5.25 illustrates such a selection. This
figure presents the scatter plot of all of the available 81 measurement cases.
This scatter plot was produced by projecting this data on the first two optimum
directions of a 74 measurement base. Group 2 which is included in the solid box
on this figure was then selected and used as the learning data set.

If the same base had been used to develop the group 1 detection algorithm as was
used for the scatter plot on which the group was selected, one would expect the
saving in variation to occur primarily by removal of variation associated with

the first two terms of the optimal space for which Figure 5. 25 is the projection.
However, since this grouping was used on a different base, this reduction of
variation occurred not in the first two optimum directions but in the higher ordered
optimum directions. This can be seen by comparing Figures 5.26 and 5. 27.
Figure 5. 26 presents the information energy as a function of number of terms used
for the base made up of the cases in group 1. The corresponding information energy
for all the cases used in the reference 81 measurement algorithm is presented in
Figure 5.27. Comparison of these figures shows that the amount of information
contained between 2 and 20 terms is significantly greater for the base developed

on the group 1 cases,.

In order to investigate which of these four types of algorithms were feasible,
exploratory algorithms were developed on the 81 measurement base. The 81
measurements used in this base were selected by considering the relative
importance vector for the initial exploratory studies of each of these algorithms.
The five algorithms which were prepared are: an example of a universal detection
algorithm for a single boiler, (i.e. 1) the universal boiler No. 1 detection
algorithm); an example of an algorithm to detect a specific type of failure,

(i.e. 2) the atomozing boiler failure detection algorithm); two examples of
algorithms for detecting fajlures in certain portions of the system, (i.e. 3) an
algorithm for detecting failures occurring in the central heating plant, 4) an
algorithm for detecting failures occurring outside of the central heating plant, and
5) the algorithm for detecting the failures occurring in group 2 as defined in
Figure 5.25. The performance of each of these algorithms as a function of the
dimensionality is summarized in the performance map presented in Figure 5. 28.
The solid lines through the appropriate symbols represent the actual patch of a
given algorithm on this performance map. The performance of the algorithm
developed for a ratio of number of cases to number of dimensions between 2.5
and 3 has been projected to determine the expected performance of these algorithms
on the test data. Although in a few cases this does not represent the best per-
formance that one can anticipate achieving by full development of the algorithm,

it does approximate the performance that one can expect given approximately an
equal amount of development effort for each algorithm.
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The projected performance of each of the algorithms shown in Figure 5. 28

is summarized as a trade-off curve between detection probability and false
alarm rate in Figure 5.28. In order to determine whether an algorithm is
shown on Figure 5.29 will be useful in the predictive preventive maintenance
system, we must establish acceptable limits and false alarm rates and de-
tection probability. In Section 3 a scheme for requiring a total of four indica-
tions of a failure before initiating action is outlined which was applicable to
both the manual and automated implementations systems. This scheme
required that after the first failure was detected no action will be initiated
until three more consecutive detections occurred. The false alarm probability
(Pg, a, ) for a scheme such as this is given by

3
Pr oa, “(Pr.oay) (Pp a2 (5-1)
and a corresponding detection probability (Pp) is given by:

P = (P

5 o) (Pp2)’ (5.2)

where: Ppi the detection probability for the initial detection of a fault

1

Ppo the detection probability for each of the subsequent evaluations

Ppap = false alarm probability for the initial detection
Ppaz ~ false alarm probability for the subsequent detections

Thus, if one considers that the initiation of the further analysis required to
evaluate three consecutive faults is acceptable once every ten days, one may
select P4y = to 0.1. If we desire approximately one false alarm per year with
respect to initiating maintenance action, one should select Pppap = .3, yielding
an overall false alarm rate of . 003 or approximately one per year. Examining
Figure 5.29 we see that Pp) coerSponding to Ppp = -1 is .94 for the universal
detection algorithm and the Ppyp corresponding to P of .3 is . 98. Substituting
these into equals 5.1 and 5.2 we find that the overall detection probability is . 88.

That is the scheme outlined will detect 88% of the failures with only one false
alarm per year. '

A similar analysis for the other three algorithms shown in Figure 5.29 yields

a detection probability of approximately . 97 for either the algorithm to detect
field problems or the algorithm for detecting scatter plot Group 2 failures. The
same scheme applied to the algorithm for detecting failures in the atomizing
boiler gives a detection probability of . 93. Examining Figure 5.29 we can see
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the advantage of this multiple application of the algorithm. In order

to achieve the same false alarm rate with a single application of these four
detection algorithms, one would have detection probabilities of approx-
imately 0.55, 0.87, 0.85, and 0.73. If one uses the multiple applica-

tion result any of the four detection algorithms give performance which would
be satisfactory for implementation of the predictive preventive maintenance
approach. Since the development of universal detection algorithms for the
seven boiler configurations is considerably less expensive than any of the other
approached tried, it is believed that for the KSC heat plant application this

is the best algorithm. There are other algorithms with better performance
and for other applications these might be desirable. However, if the expected
performance of the universal boiler No. 1 detection algorithm can be achieved
and proven, feasibility of the predictive preventive maintenance approach will
have been established in a mode utilizing a relatively straight forward detection
scheme.

The relative importance vectors which go with these five algorithms are pre-
sented in Figures 5.30 to 5.34. These relative importance vectors show the
importance of each of the 81 measurements to the decision being made by each
of the five algorithms. The importance is measured by the absolute magnitude
of the relative importance vector corresponding to the index number associated
with the measurement as defined by Table 5.4. Thus, examining Figure 5. 30
we see that measurements No. 3, 15, 24, 43, 48, 49, and 71 are quite important
to the universal detection algorithm for Boiler No. 1 failures. Reference to
Table 5.4 shows that measurement No. 3 is the rainfall during the past hour.
Measurement No. 15 is steam pressure and atomizing Boiler A, measurement
No. 24 is the supply temperature, etc. Examination of Figures 5. 30 thru 5. 34
show that amount of rainfall during the past hour is important to the universal
and field problem detection algorithms, whereas the longer period rainfall is
more important for the Group 2 detection algorithm. The change in the water
flow through Boiler No. 1 is important to the universal Boiler No. 1 detection
algorithm, the algorithm for detecting in-plant failures, extremely important
to the algorithm for detecting field failures. It is insignificant for the algorithm
for detecting failures in Group 2. ‘Clearly, analysis of these relative important
vectors can provide a basis for understanding of how each of these algorithms
works and how one should approach the problem on imporving the algorithm.
Since the universal detection algorithm has been selected as the recommended
approach for the KSC heat plant, the further development of these detection
algorithms will be illustrated in the next sections using this algorithm as the
example.

5.3 Optimization of Universal Detection Algorithm

The exploratory studies have answered the question as to what preprocessing
should be used and which algorithm should be developed. We have also seen
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as part of these exploratory analysis that the number of measurements used

can have a significant effect on the performance. One of the steps is optimizing
the algorithm is to selectively reduce the number of measurements used by
examination of the relative importance vector. Another major step is to select
‘the number of dimensions to be used for the algorithm. Decision must also be
reached on exactly how the algorithms are to be applied and as to whether the
validity criteria should be applied with the algorithm. Some of the process of
reducing the number of measurements was accomplished in the exploratory
analysis. As pointed out in Section 5.1 initial analysis was performed on 192
measurements. This 192 measurement base was reduced to an 81 measurement
base for the exploratory analysis. The 81 measurements were selected as 81
measurements pertinent to all five of the algorithms investigated in the explora-
tory analysis. Now that the analysis has been reduced to a single algorithm,
one can be more selective and select only measurements pertinent to this single
algorithm. This was done and the resulting 50 measurements which were
selected were used to formulate the base which has also been presented in
Section 5.1. It is instructive to compare the effect of this reduction from 192
measurements to 50 measurements on such things as the variation, the scatter
plot, and the optimum functions. The information energy for the 50 variable
base is presented in Figure 5.13. The corresponding 81 measurement base was
presented in Figure 5.27. Figure 5. 35 presents the information energy for the
original 192 measurement base. This figure confirms the behavior that as one
decreases the number of measurements, the representation becomes easier and
the number of dimensions required to explain a given amount of the information
decreases.

The simplification of the representation is displayed dramatically by the correspond-
ing scatter plots. Figure 5.36 presents the scatter plot for the original 192 mea-
surement base. This should be compared with the scatter plot for the 50 measure-
ment base presented in Figure 5.16. The reader notices immediately that in the
50 measurement base there are three very tight distinct groups as compared to

a relatively large scattering of groups occurring on 192 measurement base. Thus,
we see as the number of measurements have been reduced we have been able to
find a representation in which the definitions of the natural groups have become
more precise. Comparison of the first and second optimum functions given in
Figures 5.37 and 5. 38 for the 192 measurement base with the optimum functions
presented in Figures 5.14 and 5.15 for the final 50 dimensional base again shows
that the reduction of the measurements has modified the representation. In 192
dimensional base the first optimum function is effected by a great number of
variables. The first variable in Figure 5. 37, the day of the year contributes
considerable variation to the data; but when the relative importance vectors were
analyzed, it was shown to be relatively insignificant to the detection problem.

The day of the year was therefore omitted from the 50 measurements selected

for use in the final algorithm development. Thus, although the first optimum
function is dominated by the atomizing steam boiler for both the 50 and 192 dimen-
sional algorithms, the domination is more complete for the 50 measurement base.
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The second optimum function shows that in the 192 measurement base the
atomizing boilers are still significant contributors indicating that the first
optimum function was not adequate to completely explain the interrelations of
this characteristic with the other measurements. Figure 5.15 implies that

the atomizing steam boiler measurements are no longer the dominant measure-
ments for the 50 measurement base. Thus, for the 50 measurement base the
first optimum function was able to explain a much greater percentage of the
interaction of the atomizing steam boiler with the other variables.

Examination of the relative importance vectors has allowed us to reduce the
number of variables used in deriving the algorithm. The next question is that

of dimensionality which should be used for the detection algorithm. Since the
number of learning cases was limited to approximately 100 by the availability

of usable data, the maximum dimensionality which one can consider will be of
the order of 40 to 50. Thus, the initial processing was performed using 40
dimensions and the resulting relative importance spectra is shown in Figure 5. 39.
This figure shows that dimensions 38 and 40 made significant contributions to the
performance of the algorithm. The 28th dimension was the next significant mea-
surement and the next was the 19th dimension. As discussed in Section 4 this
effective dimensionality displays itself dramatically on the performance map.
The performance map for this algorithm is shown in Figure 5. 40.

The trace of this algorithm on the performance map passes through the three
points designated by the squares representing dimensionalities of 40, 29, and 20
at ‘which the algorithms were developed. The 29 and 20 dimensional cases were
selected by examination of Figure 5.39 which indicated that these two algorithms
would be near break points in the path of the algorithm along the performance
map. Comparison of Figures 5.39 and 5. 40 illustrates that the quantitative sig-
nificance of the relative importance vector on the performance map is greatly
distorted by the nonlinearities involved. Thus, even though the greatest importance
fell in the 38th optimum direction one sees little difference in the projected per-
performance of the 40 dimensional and 29 dimensional algorithm. On the other
hand, there is considerable difference between the projected performance of the

29 and 20 dimensional algorithms as indicated by the dash lines passing through
these algdrithms. As previously pointed out once the projected performance in
terms of the performance parameter, 2.0/ has been determined, one can make
an estimate of the expected detection probability versus false alarm rate. This
has been done for the 20 dimensional algorithm and for a compromise between

29 and 40 dimensional algorithms. This compromise was used since it is felt

that the projection is not sufficiently accurate to account for the differences be-
tween the 29 and 40 dimensional algorithms. The resulting performance trade-off
curves are presented in Figure 5.41.

It is interesting to note that the projected performance for the 20 dimensional
algorithm is exactly the same as that which was projected for the 81 measurement
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algorithm in the preceding section. This implies that the 20 dimensional algorithm
is based on the same physical principals as the algorithm which was being in-
vestigated in the exploratory studies using 81 measurements and 30 dimensions.
Thus, we see that the reduction of the number of measurements from 81 to 50

has allowed us to achieve the same performance with approximately 10 less
dimensions. '

The projected detection probability versus false alarm rate again allows us to
evaluate the expected detection probability using the multiple application schemes
which are being considered for this demand preventive maintenance approach.
Applying equations 5.1 and 5.2 to the data presented in Figure 5.41 we see that
since the predicted performance for the 20 dimensional algorithm is identical

to the performance for the previous 81 measurement algorithm, the detection
probability remains at 88%. For the higher dimensional algorithm the projective
detection probability associated with a false alarm rate of approximately one per
year is 96%. As before both of these detection probabilities are acceptable. The
lower the dimensionality the less likely will it be to employ the validity criteria
successfully use the algorithm. For this reason, there is some advantage in not
having to use the higher dimensional algorithms. However, the determination of
this requires an analysis of the proof test cases which will be presented in the
next section. Therefore at this point we shall consider both the 29 and the 20
dimensional algorithms as candidate algorithms for the detection required to imple-
ment the demand preventive maintenance scheme for the KSC central heat plant.
It should also be pointed out that once the specific false alarm rate has been
selected, the Fisher weighting parameter, see Appendix C, provides a way in
which one may increase the algorithm performance even more. Since the present
performance of both algorithms is adequate and the final selection of the false
alarm rate is not advisable at this stage of the program, this additional optimiza-
tion was not employed. Its potential effect un the shape of the trade-off curves

is illustrated in Section 6. 0.

Figures 5.42 thru 5. 44 present the relative importance vectors for the 40, 29,
and 20 dimensional algorithms, respectively. Examination of these three relative
importance vectors shows that there is a great deal of similarity between the 40
and 29 dimensional algorithms. This would have been expected by inference from
their similar performance as shown on the performance map. Although there are
some significant differences between the 20 dimensional algorithm and

the 29 dimensional algorithms there are also many significant similarities. For
example, measurement No. 29, the average fuel temperature is important to all
three algorithms. In contrast measurement No. 49, days since preventive main-
tenance of the portable boiler only appears significant to the 40 dimensional algo-
rithm. The fact that this variable is not significant for the 29 dimensional
algorithm is a reasonably strong indication that this is a fortuitious match rather
than a physically connected to the detection of incipient failures. The agreement
of this result with physical intuition is further justification for considering the 29
dimensional algorithm rather than the 40 dimensional algorithm.
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5.4 Algorithm Evaluation

The discussions presented in the preceding sections have shown that the ADAPT
programs provide a relatively complete evaluation of the algorithms as a by-
product of their derivation. In this section we shall present a more conventional
evaluation of the detection algorithm which will show that the estimate of the
expected performance of the algorithm provided by the ADAPT learning process is
valid. This evaluation will also provide additional confidence in the ability of

the ADAPT derived failure detection algorithm to perform the detection of
incipient failures required to insure the feasibility of the implementation of

the predictive preventive maintenance system.

The evaluation presented in this section will consist of the results of testing
approximately 200 independent test cases against the universal detection
algorithm. These independent proof test cases may be considered as belonging
to one of three groups: 1) test cases expected to be similar to the learning
cases, 2) test cases obtained under significantly different conditions than the
learning cases, and 3) those cases containing errors. The proof test cases
obtained under essentially the same conditions as the learning cases include all
those cases obtained for the same operating configuration, i.e., boiler #1
operating by itself, and over a time period during which the design of the heat-
ing plant and distribution system was the same as during the learning period.
The learning data was obtained essentially between May of 1970 and the end of
1971. The minor changes in the distribution system which occurred about
August 1971 should not invalidate any test cases. On the other hand, the major
changes in the distribution system which'occurred early in 1970 can be expected
to have a significant effect on the performance of the algorithm. Similarly, the
change in configuration from boiler #1 operating alone to boiler #2 operating
alone would also be expected to have a significant effect on the performance of the
algorithm. The testing which will be presented in this section will resolve the
questions associated with the impact of these variations on the performance of
the algorithm.

One of the major problems associated both with obtaining adequate learning data
and with performing proof test evaluation of this data is the availability of high
confidence truth data. In this case, the truth data is the actual identification of
the date and time of each of the failures and the insurance that those cases
selected as failure free are indeed free of failures. This information was gener-
ally obtained by examination of the P.M. and work order records, a summary
log kept by Mr. Guggenheim, and the plant log. The most useful single piece of
information was the summary log kept by Mr. Guggenheim, which appeared quite
adequate for identifying the date on which failures occurred. The determination
of the time of failure often required additional detective work. One technique
that proved quite effective was to examine the plant log for the time at which

the failed component was replaced by a redundant system.
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In general, errors in the truth data are more critical with respect to the evalua-
tion than to the derivation of the algorithms. Considerable experience with
ADAPT programs have shown that a few incorrect learning cases usually have

a relatively minor effect on the derivation of the algorithm. However, a few
incorrect learning cases can have a significant effect both on the performance
evaluation resulting from the ADAPT analysis of the learning data and on the
performance analysis resulting from the evaluation of independent proof data.

In general errors where the existance of a failure is not detected are more
likely. This might occur if: 1) the failure were considered sufficiently insignifi-
cant that it would not be eported to Mr. Guggenheim for inclusion in his log,

2) the maintenance would be carried out by the maintenance crew without the
preparation of the work order records, and 3) the performance of the maintenance is
omitted from the plant log. If these three events occurred, there would be no
way to determine that there had been a failure on that day. The other type of
truth data failure, (i.e. a day is identified as having a failure when a failure

did not actually occur) should only result when the occurrence of a failure is
recorded on the wrong day. In this case it is likely that this particular failure
would be recorded in an inconsistent manner between the three sources of
failure information. Several cases of such inconsistency were noted and these
cases were not used either in the learning data or in the evaluation.

The algorithms were applied to the test data using the procedures recommended
for the manual application of the algorithms. The universal detection algorithm
tested are the algorithms presented in Table 2.1, 5.3 and 5.4, These tables
list the equations for the dot product of a data vector with the corresponding
algorithm values which have been associated with the index parameters listed
in the tables. The name of each of the index parameters is summarized in
Table 2.2 for the 50 component data vector. The names for the 192 component
variables which include the 50 variables are summarized in Table 2.6. To
simplify the relationship of the names in Table 2.2, Figure 5.45 presents a
heating plant log sheet with the hourly value spaces replaced with the associated
name and number of the variable.

In some cases it is desirable not only to apply the algorithm but also to apply
the validity criteria which were discussed in Section 4. The validity criteria
consist of a series of dot products of the same format as the algorithm itself
which result in values that must be squared and summed and then compared
with the minimum acceptable value. The appropriate vectors to use for the
application of these validity criteria as well as a more detail description of the
procedure to be used are summarized in Appendix D,

The proof testing consisted of the application of the universal detection
algorithms and their associated validity criteria to the 200 test cases. The two
algorithms which should perform best are the 29 and 20 dimensional universal
detection algorithms. The performance of the se two algorithms on the 207

test cases is summarized as a function of the particular type and use of test
case in Table 5.6. The detail implication of the se results may be considered
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for each of the two types of testing performed.

Proof Testing

The proof testing of the algorithm on cases obtained under essentially the same
conditions as the learning data was performed on a total of 79 good cases and 94
cases of failures including failures in the atomizing steam boiler, sludge in the
fuel tank, boiler #1, flue gas leaks, and combinations of these with field failures.
The projection of these 173 cases on the scatter plot of the first two optimal
directions for the 50 variable base is presented in Figure 5.46. Comparison of
this figure with Figure 5. 16 shows that all of the test cases fall within the

region of the scatter plot of the learning data. Furthermore, the test cases can
be associated with the same three groups of data which were observed in Figure
5.16. This proof test data included variations in both time of day and day of year
relative to the learning data. However, there were no variations in either the
operating or design configurations of the heating plant.

Figure 5.47 shows the projection of the 94 failed cases on this same scatter plot.
Again, one observes that all of the failure cases fall within the region defined by
the learning data, and also conform to the same three groups. In Figure 5.47
the atomizing boiler failures are designated by symbols 1 and 5, the sludge in the
tank by the symbol 2, the boiler #1 failures by the sumbols 3 and 6, the flue gas
leak by the symbols 7 and 4 and the field failures and combination field and other
failures are the symbols 8 and 9.

Table 5.6 tabulates the performance of the algorithm on these test cases as a
function of failure mode for a threshold of zero. This zero threshold as discussed
under algorithm ‘design has been set for a false alarm rate of one in ten. Both
algorithms approximate this performance with the 20 dimensional algorithm
missing approximately 5 of the good cases to give a false alarm rate of 0.6 out

of 10 and the 29 dimensional algorithm missing 9 of the good ones for a false
alarm rate of approximately 1.1 out of 10. The detection of the various failures
varies both between algorithms and between failure types. Both of these varia-
tions are significant.

The performance tradeoff curves which were discussed as part of the descrip-
tion of the learning data performance evaluation which ADAPT performs can

also be used to evaluate the performance on test data. The use of these perfor-
mance tradeoff curves for this evaluation shows how the algorithm will perform
over a wide range of false alarm rates and detection probabilities. Figure 5.48
presents such a curve for the testing of the 173 proof test cases on the
20-dimensional algorithm. The dashed line presented on Figure 5.48 is the pro-
jected performance taken directly from Figure 5.41 and represents the perfor-
mance estimated by the ADAPT programs from the learning data.

There are several ways in which the test data may be presented on a detection
probability versus false alarm rate curve. The simplest and most common is
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to select a threshold, count the number of detections and the number of false
alarms and calculate the detection probability and false alarm rate. One may
then change the threshold and repeat the procedure obtaining another point on
the curve. The entire tradeoff curve may be constructed in this manner. To
evaluate arbitrarily small false alarm rates would require an infinite number

of cases. This is impossible and the range over which the detection probability
and false alarm rate curve can be compared with actual test data by the simple
method is limited by the number of test cases, This s illustrated by the cross
hatched regions in Figure 5.48. The data points surrounded by a square in Fig-
ure 5.48 were obtained as just described for different thresholds. The cross
hatched region represents the area over which it would be possible to place a
given data point due to the uncertainty in the detection probability and false
alarm rate resulting from a finite number of cases being used in the evaluation.
Clearly this region becomes larger as one approaches the smaller false alarm
rates or as one approaches the detection probability of 1. Inthe particular
pPresentation of Figure 5. 48, this uncertainty is not visible near detection
probabilities of 1 due to the fact that there is very little space involved in the
region between a detection probability of .99 and 1.0. Examination of the cross
hatched area shows that for the 173 test cases the regions of uncertainty become
quite large for false alarm rates, less than approximately . 03. Comparison of
both the cross hatched regions and the data points surrounded by a square with
the dash or projected performance shows that in the region that one has certain-
ty in the test performance and also in the region of interest which for the present
application has a false alarm rate of .1, the agreement between the ADAPT
projected performance and the actual test cases is excellent.

Another way in which the test data may be used to project the performance is
to assume that the distribution of the values produced by the algorithm is
Gaussian. This assumption is also made in the ADAPT projection of the learn-
ing data to a performance tradeoff curve. The form of the ADAPT algorithms,
see reference 9, provide an argument for the applicability of the central limit
theorem and therefore for the existence of a Gaussian distribution of the
algorithm values. If one assumes this distribution, then one may use the test
data to calculate the mean and standard deviation. The tradeoff curve for
detection probability versus false alarm rate is then constructed from this
information. This curve is represented by the line interrupted by plus signs
on Figure 5.48. If the algorithm value had a Gaussian distribution, it is

also possible to estimate the confidence level in any detection probability or
false alarm rate as a function of the number of test cases used. If these con-

fidence levels are applied to the false alarm rates associated with the test data
curve shown in Figure 5. 48, one obtains the 95% confidence limits shown by the
solid lines passing through the circles on this figure. Again we see that the perfor-
mance of the 95% confidence band and the projected performance from the ADAPT
learning data are in reasonable agreement. The conclusion that the central
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limit theorem suggests a Gaussian distribution cannot be supported at false
alarm rates which are of the order of the reciprocal of the number of test
cases or smaller. Thus, we must conclude that one cannot evaluate the
performance of the algorithm for false alarm rates of the order of the recip-
rocal of the number of test cases and less. The evaluation of these algorithms
can only be considered firm for the region of false alarm rates of approximately
0.1 to 1.0. However, for the application to the KSC heat plant a false alarm
rate of 0.1 combined with multiple applications will yield false alarm of the
order of 1 per year. Thus, the number of tests carried out are sufficient to
verify both the ADAPT projected performance based on the learning data and
the feasibility of the predicted preventive maintenance system.

The projection of the test results on Figure 5.48 under the assumption of a
Gaussian distribution is also suspect due to the non-uniformity of the per-
formance of the algorithm as a function of particular failure type. For
example, the failures associated with combinations of problems are detected
significantly less well than the failures associated with boiler #1 or failures
in the atomizing boiler. This phenomena will result in a multi-model dis~
tribution function which cannot be described accurately by a Gaussian distri-
bution function. Thus, the best method of evaluating the performance is the
direct calculation of the detection probability and false alarm rate by counting
the false alarms and detections actually observed on the test data as one
changes the threshold. This information which was presented as the data
point surrounded by a square and the cross hatched area on Figure 5.48 has
been summarized in Figure 2.2 where it is again compared with the projec-
tion from the learning data. In Figure 2.2, the triangular symbols for false
alarm rates greater than 0.1 correspond to the square symbols on Figure
5.48. The triangles for false alarm rates between .03 and 0.1 are the cen-
troid of the corresponding cross hatched areas shown on Figure 5. 48,

Figure 5.49 shows a figure corresponding to Figure 2.2 for the 29 dimensional
algorithm. Again the dashed line represents the projected performance as
taken from Figure 5.4l for the 29 dimensional algorithm and the solid triangels
represent the performance of the 29 dimensional algorithm on this test data.
Comparison of this projected performance and the actual performance shows
that the 29 dimensional algorithm performs considerably poorer than was pro-
jected from the learning data by the ADAPT programs. However, when the
ADAPT validity tests were utilized in conjunction with this algorithm, its
performance proved to be quite similar to that which was projected using the
learning data. Thus a comparison of Figures 2.2 and 5.49 suggests that the
20 dimensional algorithm can be used at least for cases obtained on the con-
ditions similar to the learning data without the necessity of performing the
validity criteria test where as the higher performing 29 dimensional algorithm
should only be used in conjunction with the ADAPT validity criteria. This
conclusion is further supported by the remaining evaluation tests carried out
using the data obtained on conditions which differ significantly from those
under which the learning data was obtained. Thus, this aspect of the perform-
ance will be discussed after the discussion of the remainder of the evaluation
tests.
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Evaluation Testing

Fifteen cases were obtained and tested in which the boiler #1 algorithm was
applied to the boiler #2 operation as if the boiler #2 had been boiler #1. In
addition, 19 cases were obtained from the period prior to May 1970 when the
hot water distribution system was considerably different from that used when
the learning data was obtained. Table 5.7 shows the average representation
or validity criteria for these two cases as compared to both the learning and
proof data. We see that in the case of all three dimensionalities considered,
the test cases obtained before May of 1970 are represented more poorly than
either the learning data or the test cases obtained assuming that boiler #2 is
essentially the same as boiler 1. The representation, assuming that boiler

2 is essentially the same as boiler 1,is also reduced somewhat from the proof
test and learning data. It is considerably better than for the cases before

May of 1970. This indicates that the assumption that boiler 2 is essentially
equivalent to boiler 1 is less severe than the assumption that the configuration
before May 1970 was the same as after May of 1970. This is entirely con-
sistent with the perfar mance as indicated by Figure 5.7 or the applicability of
the algorithm summarized in Table 5.5. Table 5.5 shows that the assump-
tion that boiler #2 was essentially the same as boiler #1 for the limited number
of 15 test cases had no significant effect on the performance of the algorithms
since it identified all 15 cases cornectly. However, in the case of the
assumption that the configuration prior to May of 1970 was identical to the
configuration after this time period resulted in only 13 of the 19 being correct-
ly identified for the 20 dimensional algorithm and only 10 of the 19 for the 29
dimensional algorithm. Furthermore, the majority of the errors were in the
direction of predicting failures when there was no failure. In other words,

the radical change in this configuration of the distribution system made the
data appear as if there were a failure in this system. This is entirely con-
sistent with the physical results that sincc one considered leaks in heat exchangers
and other field problems as failures that any unusual (relative to the learning
cases) change in the configuration which would radically affect the load for a
given operating condition should actually appear as a failure. Thus, the results
illustrated by Table 5.7 are not surprising.

In addition to these 34 cases there were 3 cases in which data recording and
punching errors were made. All 37 of these cases were represented in the
50 measurement base in order to perform this testing. Eight other cases
which were obtained and later found to correspond to inconsistencies in the
truth data were also tested, These 45 cases are shown on the scatter plot
presented in Figure 5.50. The symbol 1, 3 and 6 represent boiler #2 cases,
symbols 2 and 4 represent cases obtained prior to May of 1970, symbols 5
and 7 represent those cases containing errors for which no proof data was
available.

Comparison of Figures 5.16 and 5.50 show that symbols 1 and 4 are con-

siderably outside of the range of the scatter plot obtained on the learning data.
This again amplifies the fact that these cases are significantly different from
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the learning data and adequate testing is necessary before one can presume
that the algorithm will perform on these cases.

Validity Criteria

In Section 4.4 it was shown that the major problem associated with applying
the ADAPT validity criteris is the determination of the threshold to be
applied to the representation. Some estimate of a usable threshold for the
algorithms discussed thus far can be obtained by analysis of the performance
of these algorithms as summarized in Tables 5. 5 and 5.6 as compared to the
representation summarized in Table 5. 6. Changes relative to the leaTning
data as great as that resulting from the assumption that the data obtained
before May 1970 was the same as the data obtained after May of 1970 were
sufficient to cause significant errors in all algorithms. On the other hand,
the assumption that Boiler 2 and Boiler 1 were identical was not sufficient

to cause large reductions in the performance of the algorithm. Furthermore,
the performance of the algorithm on the proof test data was significantly
reduced for the 29 and 40 dimensional algorithms but not for the 20 dimen-
sional algorithms.

Table 5.6 shows that for the 20 dimensional algorithm the representation of
the before May 1970 cases had a mean value of 83-1/2% with the standard
deviation of 6%. This implies that if one were to choose a validity criteria
that the representation must exceed 83.5%, 50% of the invalid cases would
pass the validity criteria. This is too great a percentage of invalid cases.

If the distribution function for the representation (Q) is Gaussian, then the
addition of one standard deviation (i.e. 6% to this validity criteria yielding

a value of 89.5% would imply 30% of the invalid cases would pass. However,
examination of a properties of the representation shows that the distribution
function must be very different from Gaussian, and in fact, one standard
deviation for this value of an average representation will allow even less than
30% of the invalid cases to pass. Thus, a reasonable validity criteria for the
20 dimensional algorithm is a representation of 89. 5%. Examination of the
average representation (Q) for both boiler 2 and the proof test data on the

20 dimensional algorithm shows that both of the se significantly exceed this
minimum requirement. Thus, one would expect the performance on both the
proof test and the boiler 2 data to be approximately as good as on the learning
data. A similar analysis can be made for the 29-dimensional algorithm. In
this case, a representation of 98.5% should insure that the performance will
be similar to that of the learning data. Examination of the results for boiler
2 shows that less than ; 30% actually meet this requirement and thus the relative-
ly good performance on boiler 2 indicates that the particular out-of-normality
of boiler 2 is not of a type which causes significant problems for this particular’
algorithm. Approximately 30% of the proof test cases do not pass this validity
test. This provides reasonable explanation for the degradation in performance
of the proof test cases. Apparently, these differences from the learning data
were significant for this particular algorithm. Similar analysis on the 40
dimensional algorithm shows that even perfect representation is not adequate
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for this high dimensional algorithm. This actually is not the case due to
the fact that as one approaches representation of 100%, the distribution
function approaches the delta function and thus more and more non-Gaussian
so that there is always some validity criteria less than 100% which is
acceptable; however, in this case it is clear that the validity criteria prob-
ably should be of the order of 99.95% and thus very little of the proof test
data and almost none of the boiler 2 or before May 1970 data would pass this
validity criteria.

These general results are in good agreement with the performance map
presented in Figure 5.40. Since in this figure both the 29- and 40-dimensional
algorithms are still quite near the random separation region, there is a por-
tion of these algorithms which is not based on the physics of the problem.
Therefore, any significant reduction in representation will make some random
contributions to the decision statistic. Only when the algorithms approach a
ratio of number of cases to number of dimensions of approximately six can
one expect a large tolerance on the representation, Thus, the performance
illustrated by Figure 5.49 as compared to Figure 2.2 could easily have been
anticipated from examination of the performance map of Figure 5. 40.

5.5 Implications to Preventive Maintenance

Al
The major implication of the successful incipient failure detection algorithm
is that one now has the option to perform maintenance on a demand as well as
a schedule basis. The advantages of performing maintenance on a demand
basis have been reviewed in Section 3. There are also conditions under
which one might find it advantageous to implement both the schedule and demand
maintenance systems to complement one another. Examples of cases such as
this are those cases where failure during operation is extremely costly such
as applications to spacecraft. In this case, one would still desire to perform
schedule preventive maintenance to minimize the number of failures occurring
during the operation of the system while retaining the demand preventive
maintenance system to allow one to switch away from components which are
about to fail during the operation. The combination of the scheduled and
demand preventive maintenance systems will probably result in a more
expensive maintenance system than a simple demand system, but will provide
a system with even less likelihood of a catastrophic failure.

If the scheduled maintenance is to be performed either by itself or in con-
junction with the demand preventive maintenance, examination of the rela-
tive importance vectors such as that presented in Figure 5.44 can assist in
improving the scheduling of the maintenance. Referring to Table 2.5, we
see that variables 31 thru 49 are the time since the last scheduled preventive
maintenance was performed. Noting that the maximum interval between a
scheduled preventive maintenance on any item in the learning data is that
interval which is currently being used, it follows that the lengthening of any
of the intervals for those scheduled preventive maintenance operations which
show little importance in failure detection might lead to increased failures.
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Thus, it is recommended that those PM items which do not appear significant

in the relative importance of the detection algorithms should not be changed.

As would be expected, the great majority of the schedule preventive maintenance
items are in this category indicating that the existing PM schedule is an effective
one.

When a particular item in the PM schedule appears in the relative importance
vector as significant with a position value, (i.e. the time since the last pre-
ventive maintenance inspection is greater than average), the system has less
likelihood of failure. Thus, positive relative importance implies that the
schedule should be reduced. Similar reasoning indicates that if the schedule
maintenance has a significant negative value, maintenance is not being per-
formed frequently enough and the frequency of the schedule maintenance should
be increased. Examination of Figure 5. 44 shows that those schedule maintenance
items which have positive relative importance values and, therefore, are
apparently being performed too frequently include the electrical and mechanical
PM on the fuel pump, on the LTW pump, the electrical PM on the chemical
pump, and the electrical PM on the cooling tower. This same figure shows
that those PM's having significant negative contributions to the detection algo-
rithm include the electrical PM qn the makeup feed pump, PM on the sump
pump, and the mechanical PM on the cooling tower. This indicates that the
frequency of these preventive maintenance operations should be increased.

Examination of both the optimum functions and the relative importance vector
suggests that it is desirable to provide additional automatic sump pumps in
all manholes in which water collects after rains and to modify the high
temperature hot water lines so that they are either insulated from any rain
which may fall around them or are removed from areas in which rain water
can flow over them. This follows from the fact that the load on the system

as indicated by the first optimal function is dominated to a large extent by

the rainfalls. This is reinforced by the fact that the one-hour rainfall appear-
ing in the relative importance vector also correlates with the variables defin-
ing how hard the heating plant is working. Thus one might conclude that
reduction of the heat loss due to the flow of rain water in the system will have
two benefits: 1) a significant reduction in fuel consumption due to a decrease
in the load on the system and 2) a reduction in the major variation of the data
set thus allowing further improvement in the performance of the predictive
preventive maintenance algorithms. '

Detail examination of the relative importance vector shown in Figure 5.44
also provides insight as to the manner in which this algorithm is working and
why it has capabilities to detect incipient failures which are often better than
the capability of the operator. The first point to notice is that instead of just
using the performance measures available in the instrumentation of the system
the algorithm is also making use of external influences such as rainfall and of
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the time since the most recent maintenance. The consideration of all fifty
items simultaneously is something which is beyond the capability of the
human mind unless the consideration has been formalized into a specific
procedure or at a maintenance algorithm. For example, one might consider
that the increase in zone flows would have the same influence regardless of
the zone. However, examination of the relative importance vector shows
that a decrease in the flow in zone 3 can be compensated for by a corres-
ponding decrease in the flow of zone 2. However, an increase in the flow

in zone 2 at the same time that the flow in zone 3 decreases is a strong
indication that the system may soon have a failure. The reader is cautioned
that this conclusion is only one of a great many combination of events which
are considered simultaneously by the ADAPT algorithms and cannot be used
by itself as a detection scheme.

The analysis of the effect of the number of measurements presented in
Section 5.2 showed that when the number of measurements used drop below
from 10 to 74, there is a significant decrease in the ability to predict
incipient failures. Even as small a set of measurements as 10 will lead to
a great many interactions when one considers that the threshold on each
measurement should be different depending on the value of each of the other
measurements. It is this complex interaction between these measurements
that requires an algorithm such as those derived by the #DAPT programs to
insure proper interpretation of past experience.
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TABLE 5.1
LEARNING CASES FOR UNIVERSAL BOILER 1 DETECTION ALGORITHM

Failure Free Cases

Date No. Cases
May 1970 2
July 1970 1
August 1970 4
December 1970 1
April 1971 3
May 1971 17
August 1971 2
OQOctober 1971 10
November 1971 10

Failure Cases

Mode Failure Date No. Cases
Field Failures 5/29/70 3
Field Failures 12/4/70 5
Field Failures 6/1/71 2
Field Failures 10/12/71 2
Field Failures 11/9/71 1
Field Failures 12/4/71 3
Distribution Pump 10/27/71 2
Atomizing Boiler 8/11/70 2
Atomizing Boiler 4/23/71 2
Atomizing Boiler 10/21/71 2
Cooling Tower 4/25/71 3
Cooling Tower 5/6/71 2
Sludge in Oil Tank 5/3-5/70 6
& Fuel Valve Prob. - -
Forced Draft Fan 5/9/71 3
Boiler No. 1 6/1/71 3
Boiler No. 1 10/12/71 2
Boiler No. 1 10/25/71 1
Flue Gas Leak 11/11/71 5
Plant Shut Down 12/6/70 1
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TABLE 5.5 USE OF 207 TEST CASES

NO CASES USE

173 PROOF TEST-VARIATION OVER
TIME OF DAY AND DAY OF YEAR

15 EVALUATE BOILER 1| ALGORITHM
ON BOILER 2

19 EVALUATE EFFECT OF MAJOR
CHANGES IN DISTRIBUTION
SYSTEM

207

-83-



TABLE 5.6

SUMMARY OF TEST CASES

No. Correct -0 Threshold
No. Cases Use Class 20 Dim. 29 Dim
79 Proof Test - Good 74 70
27 Variation over Fail - Atom Boiler 25 25
1 time of Day and| Fail Sludge in Tank 1 1
14 Day of Year Fail Boiler No. 1 13 _ 14
7 Fail Flue Gas Leak 6 7
45 7 Fail Multiple Probs. 41 35
94 Fail
10 Evaluate Good Boiler B 10 10
5 Sensitivity Fail Boiler B 5 5
4 to Good Prior §/70 0 0
15 Change Fail Prior 5/70 13 10
3 Data Recording .‘5_1 Key Punch Error - -
-84-



SUMMARY OF REPRESENTATION AND PERFORMANCE

TABLE 5.7

Case No. Dim. 40 29 20
LEARN .
Q . 99977 L9976 .988
Oq . 00018 .0016 . 008
Z”/v .42 .48 .63
PROOF .
Q . 9982 .990 .963
Oq . 0011 . 007 . 027
Z0/, 1.0 .91 .80
BLR 2 .
Q .989 .973 .94
Ja . 005 .01 .02
Zo/y .32 .31 .36
BEFORE 5/70
Q . 980 .925 .835
0 a .03 .06 .06
Zo/y .81 1.20 .93
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FIGURE 5,1 - TYPICAL DATA HISTORY (AUGUST 14, 1970)

Value of Measurement Corresponding to Indexing Variables
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FIGURE 5.3 - VARIATION OF INFORMATION RETAINED WITH DIMENS |ONALITY
FOR 50 MEASUREMENT BASE
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FIGURE 5.4 - FIRST OPTIMUM FUNCTION ORIGINAL 50 MEASUREMENT BASE

Relative Contribution to Optimal Function
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FIGURE 5.5 - SECOND OPTIMUM FUNCTION OR1GJGINAL 50 MEASUREMENT BASE

Relative Contribution to Optimal Function
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FIGURE 5.6 - COMPARISON OF TYPICAL DATA HISTORY AND TWO-TERM

RECONSTRUCTION
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FIGURE 5.7 - COMPARISON OF TYPICAL DATA HISTORY AND FIVE-TERM
RECONSTRUCTION
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FIGURE 5.8 - COMPARISON OF TYPICAL DATA HISTORY AND TEN-TERM
RECONSTRUCTION

PROB 2740 Z-L VECTOR VERSUS INDEXING VARIABLE
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FIGURE 5.9 - SCATTER PLOT OF FIRST AND SECOND COEFFICIENTS OF GENERALIZED
FOURIER SERIES REPRESENTATION OF CASES USED TO DERIVE ORIGINAL
50 MEASUREMENT BASE
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FIGURE 5.10 - SCATTER PLOT OF FOURTH AND FIFTH COEFFICIENTS OF GENERALIZED
FOURIER SERIES REPRESENTATION FOR LEARNING DATA USED IN THE
ORIGINAL 50 MEASUREMENT BASE
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FIGURE 5. 11 |
FOURTH OPTLMUM FUNCTION ORIGINAL 50 MFASUREMENT RASE
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FIGURE 5.12
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FIGURE 5.13 - VARIATION OF INFORMATION RETAINED WITH DIMENSIONALITY FOR
REFERENCE 50 DIMENS1ONAL BASE '
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FIGURE 5.14 - FIRST OPTIMUM FUNCTION FOR REFERENCE 50 DIEMNSIONAL BASE
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FIGURE 5,15 - SECOND QPTIMUM FUNCTION FOR REFERENCE DIMENS|ONAL BASE

Relative Contribution to Optimal Function
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FIGURE 5.16

SCATTER PLOT OF FIRST AND SECOND COEFFICIENTS OF GENERALIZED FOURIER

SERIES FOR CASES USED TO DEVELOP REFERENCE 50 MEASUREMENT BASE
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IGURE 517 - SEVENTH OPTIMUM EUNCTION FOR ORIGINAL 5C MEASUREMENT BASE
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FIGURE 5,18 - SIXTH OPTIMUM FUNCTION FOR REFERENCE 50 MEASUREMENT BASE
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FIGURE 5.19 - THIRD OPTIMUM FUNCTION FOR REFERENCE 50 MEASUREMENT BASE
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FIGURE 5, 20 - FOURTH OPTIMUM FUNCTION FOR REFERENCE 50 MEASUREMENT BASE
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EIGURE 5. 21 - EIGHTH OPTIMUM FUNCTION FOR REFERENCE 50 MEASURFMENT BASE

EIGEN FUNCTION NP8

g

Q
by

~»
o

-

\
{4

b
&

Relative Contribution to Optimal Function

[} 10 20 ”0 40 0 L

INDEXING VARIABLE 107

-106-




IGURE 5. 22 - NINETEENTH OPTIMUM FUNCTION FOR REFERENCE 50 MEASUREMENT BASE
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FIGURE 5, 26

VARIATION OF INFORMATION RETAINED WITH DIMENSIONALITY FOR THE 81 MEA-
SUREMENT BASE CONSTRUCTED FR(ODI\ngE?CASES BELONGING TO SCATTER PLOT
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FIGURE 5.27 - VARIATION OF INFORMATION RETAINED WITH DIMENSIONALITY FUR
REFERENCE 81 MEASUREMENT BASE
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FIGURE 5.30 - RELATIVE IMPORTANCE OF MEASUREMENTS FOR DETECTING INCIPIENT
FAILURES USING 30 DIMENSIONS
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FIGURE 5,31 - RELATIVE IMPORTANCE OF MEASUREMENTS FOR DETECTING INCIPIENT
IN-PLANT FAILURES USING 40 DIMENSIONS
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FIGURE 5.32 - RELATIVE IMPORTANCE OF MEASUREMENTS FOR DETECTING FIELD
PROBLEMS USING 24 MEASUREMENTS
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FIGURE 5.33 - RELATIVE IMPORTANCE OF MEASUREMENTS FOR DETECTING FAILURES
OF THE ATOMIZING BOILER USING 38 DIMENSIONS
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FIGURE 5.34 - RELATIVE IMPORTANCE OF MEASUREMENTS FOR DETECTING FAILURES
IN SCATTER PLOT GROUP 2 USING 20 DIMENSIONS
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FIGURE 5.35 - VARIATION OF INFORMATION RETAlNED WITH DIMENS IONALITY FOR .
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FIGURE 5.37 - FIRST OPTIMUM FUNCTION 192 MEASUREMENT REFERENCE BASE
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FIGURE 5.38 - SECOND OPTIMUM FUNCTION 192 MEASUREN\ENT REFERENCE BASE
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FIGURE 5. 39
RELATIVE IMPORTANCE OF OPTIMAL DIRECTIONS FOR DETECTING INCIPIENT FAILURES

RELATIVE IMPORTANCE SPECTRUM
1.2 ) )

I
.
(-}

Relative Importance of Direction or Coefficient

. ﬂ i

® 10 : 20 30 40

COEFFICIENT NUMBER 187




———— Y0¥¥3 40 "90d
9000 L0l

‘_ :
il T
! aio o] e
B e
RN T 1]
BETESEREDR
. _ﬂﬁ |
- L

o o SINIWIUNSVIW
| Q&Z_S WHLI¥091V NOLLDAI30 T# ¥31108 AINN-dVW uozss_o&& A EILIE]

b

£ L R oaﬁ|~

6.8 w7 [ g

-




1 -1658

(£L31119Rq02g WOTI0e3eq) da

¢l

\

-

@0°Q

locet ()

Il

.

_ .

T ]

T

SWHLI 4097V INIWIINSYIW 09 40 IONYWHO04¥Id 43103dX3

P

g et e

NN

INIIVdWOI 404 JAYNI 140-3aVYL JONYWY0LYId NOILYII4ISSYID - Tv 6 3¥N9 i

SUOIST AL X EATOAD €

e

16655

Y

b

e TR S ! UM A SRR E A A

Cmal K I kR el S

Lon

i

- “(&3111qRq01d woroeea) Ta

20 — -1
N A ot el
RN
+'0 2= . 147
: 7Q
_ SRR
8o
4T B t " .
. &A o w L
‘ S SaRN .

|

NOTE: USE TYPE B PENCIL FOR VUGRAPHS AND REPORT DATA.

o

.
. D R VTR T X N T vy ]
i ;



FIGURE 5, 42-RELATIVE IMPORTANCE OF MEASUREMENTS FOR 40 DIMENSIONAL UNI -

VERSAL DETECTION ALGOR ITHM
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FIGURE 5. 43 - RELATIVE IMPORTANCE OF MEASUREMENTS FOR 26 DIMENSTONAL
UNIVERSAL DETECTION ALGOR ITHM

DIFFERENCE FUNCTION

=

F-
]

Relative Importance of Measurement Corresponding to Indexing Variables

-0.400

[ ] 10 2 0 49 %0 0

INDEXING VARIABLE

) Tna
o

-128-




FIGURE 5. 44 - RELATIVE IMPORTANCE OF MEASUREMENTS FOR 20 DIMENS IONAL

UNIVERSAL DETECTION ALGORITHM
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E1GURE 5. 46 - SCATTER PLOT OF FIRST AND SECOND COEFFICIENTS OF GENERALIZED
" FOURIER SERIES REPRESENTATION OF NON-FAILING TEST CASES
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FIGURE 5, 4/
SCATTER PLOT OF FIRST AND SECOND COEFFICIENTS OF GENERALIZED FOURIER SERIES

REPRESENTATION FOR TEST CASES IN WHICH HEATING PLANT FAILURES OCCURRED
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FIGURE 5.50
. SCATTER FLOT GFFIRST AND SECOND CHEFFICIENTS OF GENERALIZED FOURIER
©¢ErIES REPRESENTATION OF EVAL JATDN TEST CASES ‘
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6.0 DIAGNOSTIC ALGORITHMS

The previous section showed that it would be feasible to develop algorithms to
detect incipi?ant failures for the KSC central heat plant. Thus, it becomes
meaningful to determine if this same data can be used to diagnose what com-
ponent or region of the central heat plant is about to fail. Although success of
a diagnostic algorithm is not absolutely essential to establish the usefulness of
ADAPT algorithms for demand maintenance of a system such as this, the
availability of diagnostic algorithms will considerably improve this capability.
Niagnosis can in principal be performed in two ways: 1) develop detection
algorithms for detecting specific faults versus all other cases, and 2) if one
has already performed the detection diagnostic algorithm is a classification
algorithm separating the particular failure of interest from all other failures.
Since it is quite likely that many failures will have much in commbn, the
prognosis of successfully developing diagnostic algorithms is better for the
second approach, that is separating a particular failure from all other failures
than for the first approach. This section will show the feasibility of developing
diagnostic algorithms of this second kind based on the central heat plant data
similar to that used to develop a diagnostic algorithm in the preceding section.

Since a separate diagnostic algorithm must be developed for each failure mode,
the cost of developing the family of diagnostic algorithms is considerably

greater than the corresponding cost of developing the detection algorithm.
Furthermore, the feasibility of the predictive preventive maintenance system

is not as critically dependent on the ability to develop a particular failure diag-
nostic algorithm as it was on the ability to develop algorithms to detect incipient
failures. Thus, the feasibility demonstration will not include the derivation of

a complete set of operational diagnostic algorithms but will be limited to demon-
strating the feasibility on two typical failures. The feasibility will be demonstrated
based on the projected performance of the initial exploratory algorithm develop-
ment. The ability to achieve and improve on this projected performance was
demonstrated on the detection algorithms as described in the preceding section.
Although a similar demonstration of the optimization and proof testing of these
algorithms can be achieved from a technical standpoint, the task is more appro-
priate to the development of the predictive preventive maintenance system than

to the demonstration of the feasibility of this system. '

In principal, it would not be necessary to develop a new base to develop the diag-
nostic algorithms. However, one might expect that in general the performance
will be slightly better if the base used to develop a given diagnostic algorithm has
been derived for that specific task and that the results achieved will more typical
- of those that would be expected for the development of diagnostic algorithms for
different types of failures if a new base were developed for each of the two failure
modes being investigated. '
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The first base which was developed was that to be used for diagnosing the failure
of Boiler No. 1. This base was derived using a total of 50 cases, 13 failures of
Boiler No. 1, and 37 of other types of failures. All of the analysis for the diag-
nostic algortthms were accomplished using all 192 measurements. Figures 6.1
thru 6.4 present principal characteristics of the representation for the base used
for diagnosing the Boiler No. 1 failure. These figures may be compared with
Figures 5. 35 thru 5. 38 which presented similar information for 192 measurement
base derived for separating good cases for incipient failures. Comparison of
Figures 6.1 and 5. 35 shows that the representation for the diagnostic cases is
easier than for the detection cases. This would be expected from the fact that
the diagnostic base only includes failure type cases and need not account for the
variation associated with good cases. Some of this difference is also probably
due to the fact that the diagnostic base was constructed using half as many cases
as the detection base.

Figure 6.2 presents the scatter plot for the detection of Boiler No. 1 failures.
Note that on this scatter plot the numeral's 1 indicate those cases for which
Boiler No. 1 failure occurred and the 2's indicate other types of failures. Thus,
both the 1's and 2's would appear as 2's on Figure 5. 36. In comparing Figures
6.2 and 5. 36 the reader is cautioned that a double mirror image has occurred,
that is both the first and second optimum functions have selected opposite signs
for the base derived for detecting Boiler No. 1 failures. When this is accounted
for the scatter plots are indeed quite similar. This is in agreement with the
results that are obtained by examining Figures 6.3 and 6.4 and comparing them
with Figures 5.37 and 5.38. In general, we see that the first optimum functions
are very similar except that the sign is reversed. There are no qualitative dif-
ference between the first optimum functions of the boiler diagnostic base and the
universal detection base and no significant quantitative differences. Again, when
the sign is accounted for, careful examination of the second optimum function
presented in Figures 6.4 and 5. 38 shows only four sighificant qualitative dif-
ferences between these two optimum functions. These differences are the appear-
ance of spikes associated with variables 46, 60,93, and 106 which appeared in

the base for diagnosing Boiler No. 1 failures. Referring to Table 2.5 we see ]
that these variables correspond to the return temperature. associated with zone 2,

the 12-hr. average of Boiler No. 1 outlet temperature, the 12-hr. average of

the zone 2 return temperature, and the soft water meter. Recalling that these
variables are important to failure diagnosis, it is not surprising that a base con-
sistent only of failure cases would be more likely to include these variables earlier
in the representation. This also suggests that further improvement in the diag-
nostic algorithms developed in Section 5 might be achieved by using a failure base
rather than a combined base for deriving the universal detection algorithm. This

. is another possibility which might be investigated as part of the development pro-
gram but which was not necessary to establish feasibility.

A ————

Figures 6.5 thru 6. 8 present the corresponding information for the base used to
derive the algorithm for diagnosing failures in the atomizing steam boiler. This
base was derived using 75 cases, 35 of these cases represented failures of the
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atomizing steam boiler and 40 of the cases represented other failure types.

Comparison of the information energy curves presented in Figure 5.35, 6.1,
and 6.5 shows that the difficulty of representation is approximately equal for
both of the bases utilizing only the failure data. But both of these (i.e. Figures
6.1 and 6.5) are considerable easier to represent than the combined base of
good cases and failure cases. Figure 6.6 presents the scatter plot presenta-
tion of the cases used to develop the algorithm for diagnosing atomizing steam
boiler failures. On this figure the numerals 1 represent those cases for which
atomizing steam boiler failures occur and numerals 2 are other failure cases.
Comparison of Figures 6. 2 and 6.6 shows that the scatter plots for these two
bases are quite similar.

Comparison of Figures 5. 37, 6.3, and 6.7 shows that there is still no signi-
ficant variation both quantitative or qualitative between the first optimum functions
of all three of these bases. However, comparison of the second optimum function
shown in Figures 5.38, 6.4 and 6.8 shows that there is variation in a few variables
between the base used to detect the atomizing steam boiler failure and the base
for detecting the Boiler No. 1 failures. In particular, the soft water make -up
feed meter measurement is the only measurement of the four measurements which
differed between the Boiler No. 1 diagnostic base and the universal detection base
which is still important in the atomizing steam boiler base. With the exception

of the remaining three measurements and noting the mirror image effect, one
sees that the second optimum function of the two diagnostic bases is still very
similar and in fact in a qualitative sense much more similar than the universal
detection base relative to either or both of the diagnostic bases.

The relative importance vectors for the two diagnostic algorithms derived on
these bases, that is the algorithms for diagnosing Boiler No. 1 failures versus

all other failures, and the algorithm for diagnosing atomizing steam boiler fail-
ures versus all other failures are presented in Figures 6.9 and 6.10. These
figures provide a basis for reducing the number of measurements to be used for
the diagnosis and thereby beginning the optimization process of the diagnostic
algorithms. They also provide a basis for understanding the failure mechanisms
and thus improving both the system and its maintenance. The reduction of the
number of measurements would be a part of the development program to imple-
ment the predictive preventive maintenance approach. The analysis of the relative
importance vectors to understand the failure mechanisms of the system although
extremely useful are beyond the scope of the present study. However, these

plots in conjunction with the corresponding relative importance plots presented

in Section 5 provide the reader with the information required to carry out this

" analysis. The load on the system is very important to both the universal detection
algorithm, the atomizing steam boiler detection algorithm, the atomizing steam
boiler diagnostic algorithm, and the Boiler No. 1 diagnostic algorithm. This is
shown by the fact that the amount of rainfall, the temperature and the maintenance
on the sump pumps tend to be important for all of these algorithms. Figure 6.9
shows that both the 3-day and the 10-day rainfall are extremely important to
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diagnosing Boiler No. 1 failures. However, we note that the 3-day rainfall
appears as a negative parameter and the 10-day rainfall as a positive para-
meter. This implies that Boiler No. 1 failure tends to occur later after a
rain storm than the other failures. The fact that each of these variables has
approximately equal absolute magnitude also suggests that since it is the dif-
ference between these rainfalls which actually enters the diagnostics that the
actual relative importance of these two variables taken together may be signi-
ficantly less than suggested by the initial cursory examination of Figure 6.9.
Considerable information should be available from detail analysis of these
figures and this is recommended as a further study program.

The performance of these two algorithms is summarized on Figure 6.11. The
Boiler No. 1 diagnostic algorithm indicated by the triangles was developed at
20 and 15 dimensions. Both of these algorithms projected to the same per-
formance indicating that a minimum of significant information is lost in the
reduction from 20 to 15 dimensions. Examination of the relative importance
spectrum for these algorithms indicated that this performance should continue
clear down to 13 dimensions. The projected performance is obtained by ex-
tending the algorithm track with a fixed slope until the ratio of number of cases
to number of dimensions is approximately 6. This yields an expected performance
for the final Boiler No. 1 diagnostic algorithm of approximately . 49 which cor-
responds to a probability of error of approximately 1 in 100.

The diagnostic algorithm for the atomizing steam boiler which was developed

at 35 and 20 dimengions is also shown by the squares on Figure 6.11. This
algorithm projects to considerably different performances for the 35 and 20
dimensional algorithm. This indicates, as does the relative importance spectrum,
that significant information is lost as one decreases from 35 to 20 dimensions.

For this reason the performance estimate has been based on projecting the per-
formance of the 35 dimensional algorithm. This position appears to be sufficiently
far from the random separations that the performance projection should be satis-
factory. Project to performance parameter has a value of approximately .37
which corresponds to a probability of error between . 001 and . 005. ‘

The trade-off between detection probability and false alarm rate which can be
expected for these two algorithms is presented in Figure 6.23. Examination ’
of this figure shows clearly that both of these algorithms have a performance
which is completely adequate for application to the predictive preventive main-
tenance schemes outlined. Even without introducing techniques of multiple
applications one finds that if false alarm rates of 1 in 100, the detection proba-
bility are of the order of 98 to 100%. The performance shown on Figure 6. 23

" has been projected in exactly the same manner as performance for the universal
detection algorithm was projected in Sections 5.2 and 5.3. These projections
were verified by the tests presented in Section 5.4 and thus it is believed that
the performance shown in Figure 6.23 can be taken as a demonstration of the
feasibility of utilizing the ADAPT programs to derive the diagnostic algorithms
required for the straight forward implementation of a predictive preventive main-
tenance system.
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The Boiler No. 1 diagnostic algorithm provides an excellent example for
illustrating the effect of the Fisher weighting parameter on the trade-off be-
tween the detection probability and false alarm rate. Experience has shown

that the performance parameter ZT/yv is relatively insensitive to the change
in the Fisher weighting parameter (See Ref. 9). Experience has also shown

that the parameter 2/‘/_—' which for the special case of J,~ , 1is identical
to the performance parameter is quite sensitive to the Fisher weighting parameter.
Thus, when projecting the performance of an algorithm to the case of ¢, = &7 ,
the projection must always be performed utilizing the performance parameter
and calculating the corresponding value of V. This is illustrated by Figure 6.12
where the upward facing triangles present the performance trade-off for the
Boiler No. 1 detection algorithm for the case of ¢,=¢,. The downward facing
triangles present the same curve for the case of (5, = 3,3 0'_ which can be
obtained from the same set of data as the upward facmg trlangle curve by simply
changing the value of the Fisher weighting parameter. Although the downward
facing triangle curve at first appears to have poorer performance than the curve
for equal standard deviations, this is a result of the linear scale for detection
probability. In fact, the downward facing triangle curve has significantly better
detection probabilities for false alarm rates greater than . 01. For example

the detection probab111ty at a false alarm rate of .04 is . 9998 for the down-
ward facing triangles and only . 997 for the upper triangles and at . 01 the down-
ward facing triangles have a detection probability of . 9999993 as compared to

. 99994 for the upward facing triangles. Thus the Fisher weighting parameter
for the downward facing triangles is better for those cases where false alarm
rates are greater than . 0l. The selection of the proper Fisher weighting para-
meter as a function of false alarm rate is discussed in more detail in Appendix
C.
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FIGURE 6.1 - VARIATION OF INFORMATION RETAINED WITH DIMENSIONALITY FOR
FOR BOILER NO. 1 DIAGNOSTICS BASE
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FIGURE 6,2 - SCATTER PLOT OF FIRST AND SECOND COEFFICIENTS OF GENERALIZED

FOURIER SERIES REPRESENTATION OF DATA USED TO DEVELOP BOILER
NO, 1 DIAGNOSTIC ALGORITHMS
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FIRST OPTIMUM FUNCTION FOR BOILER NO, 1 DIAGNOSTIC ALGORITHM

FIGURE 6,3
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FIGURE 6.4
SECOND OPTIMUM FUNCTION FOR BOILER NO. 1 DIAGNOSTIC ALGORITHM BASE
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FIGURE 6.5
VARIATION OF INFORMATION ENERGY RETAINED WITH DIMENSIONALITY FOR
ATOMIZING BOILER DIAGNOSTIC BASE
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FIGURE 6. 6

SCATTER PLOT OF FIRST AND SECOND COEFFICIENTS OF GENERALIZED FOURIER SERIES

REPRESENTATION FOR LEARNING CASES USED IN DEVELOPING ALGORITHM FOR DIA-
GNOSING ATOMIZING STFAM BROILFR FAILURES
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FIGURE 6,7

FIRST OPTIMUM FUNCTION FOR ATOMIZING STEAM BOILER DIAGNOSTIC BASE
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FIGURE 6. 8

SECOND OPTIMUM FUNCTION FOR ATOMIZING STEAM BOILER DIAGNOSTIC BASE
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FIGURE 6.9 - RELATIVE IMPORTANCE OF MEASUREMENTS FOR DIAGNOSING FAILURES
IN BOILER NO. 1 USING 20 DIMENSIONS
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FIGURE 6, 10 - RELATIVE IMPUKTANCE uF MEASUREMENTS FOR DIAGNOSING FAILURES

iN THE ATCMIZING STEAM BOILER JSING 35 DIMENSIONS
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7.0 TIME TO FAILURE ALGORITHM

When both the detection of an incipient failure in the system and the diagnosis
of the failure has been completed, the remaining question is when will the
failure occur. If this information is also available, the demand mainten-

ance system cannot only alert the maintenance people that the failure will
occur, define where the failure will occur, but also can schedule the correc-
tive action to cause the least inconvenience to both the maintenance personnel
and the users. The development of algorithms to predict the time at which
f2ilure will occur is the most difficult of the three types of algorithms con-
sidered. The major reason for this difficulty is the fact that a great deal of
data is required for any given failure mode before one has sufficient informa-
tion to derive such an algorithm. The compensation for this disadvantage is
that it is exactly this failure that is most likely to occur. One series of
failures for which such a set of data is available is the failure of the atomiz -
ing steam boiler. For this reason we have selected the atmozing steam boiler
as a case to demonstrate the feasibility of deriving time-to-failure algorithms
for those failures occurring sufficiently often to provide an adequate data
base.

A separate base was constructed to be used for the derivation of the time-to-
failure algorithm. This base was constructed using the 29 cases describing
the Kennedy Space Flight Center central heating plant prior to the failure of
the atomizing steam boiler. These 29 cases were processed through the
ADAPT programs. The effect of dimensionality on this representation of these
29 cases is shown in Figure 7.1. The representation is nearly complete with
only 15 terms. The first two of the optimum functions derived, using the time
to failure data base are shown in Figures 7.2 and 7.3. When compared with
Figure 5.37 and Figure 5.38, the most striking difference is the disappear-
ance of the steam pressure for atomizing boilers A and B from these two
optimum functions. This implies that for the atomizing steam boiler failures
there was far less variation in the steam pressure associated with the atomiz-
ing boilers. If these two variables and their 12-hour average are deleted
from Figure 5.37, the remainder of the variation is remarkably similar to
that shown by Figure 7.2. The same is true for the second optimum function
given in Figure 7. 3.

Figure 7.4 presents a scatter plot representation of the atomizing steam
boiler cases. This scatter plot shows four individual groups representing
the four specific failures for which time-to -failure information was avail-
able. Examination of the distribution of these failures on the scatter plot
represented in Figure 7.4 in comparison with the scatter plot for the
universal detection base presented in Figure 5. 36 shows that the failures of
the atomizing steam boiler represent a reasonable cross section of the varia-
tion displayed by the entire data base.
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Time-to-failure algorithms were developed using twelve and nine dimensions.
The relative importance spectrum for these algorithms is shown in Figure 7.5.
This figure shows that the most important dimension for the time-to-failure
algorithm is dimension No. 9. It also shows that there is significant informa-
tion in the eighth, tenth, and eleventh optimum functions.

Figure 7.6 shows this ninth optimum function. The most important variables
to this function are the rainfall during the past hour, the change in the boiler
No. 1l flow, the number of gallons of fuel used, the change in flow for Zone 2
makeup feed water meter and the number of gallons of fuel used by the atomiz-
ing steam boiler. Thus in part, this function is made up of a contrast between
the amount of energy used by the boiler, the heating load being carried by the
boiler and the amount of fuel being supplied to the atomizing steam boiler.

This is a reasonable collection of information to make a significant contribution
to the time-to-failure, The track of this algorithm on the performance map is
shown in Figure 7.8. The two algorithms were presented by the circles on the
solid line which shows the effect of dimensionality on the performance of this
algorithm. The curvature of this line is based upon the relative importance
spectrum shown in Figure 7.5. That is,very little information is lost as one
decreases from twelve to eleven dimensions, a significant and approximately
equal amount is lost in decreasing from eleven to ten and ten to nine measure-
ments. Once one decreases below nine measurements, a very large amount of
the information required predicting the time-to-failure is lost.

Figure 7.8 presents a comparison of the estimated time-to-failure with the
actual time-to-failure for the 12-dimensional algorithm. The abscissa on

this plot is the actual number of hours prior to the occurrence of the failure
for that particular case and the ordinant is the time-to-failure as estimated
using the time-to-failure algorithm presented in Table 2.4. Since this
algorithm only has a ratio of number of cases to number of dimensions of about
2-1/2, one might expect this performance to be degraded somewhat. However,
the performance indicated for this algorithm is a one-sigma accuracy of six
hours. This accuracy is illustrated by the interrupted line of Figure 7. 8.

The accuracy which might be expected of a final algorithm should certainly.
be greater than that achieved by the 9-dimensional algorithm which was a
one-sigma error of 9 hours. Thus, one can be quite confident that the kind .
of failure for the atomizing steam boiler can be predicted to within 6 to 9
hours and probably closer to 6 hours of the time-to-failure 72 hours in advance
of the failure. Figures 7.8 and 7.9 present the relative importance vectors
for the 9 and 12 dimensional time-to-failure algorithms respectively. These
figures show the importance of each of the measurement to predicting the
number of hours before failure will occur. As would be expected, many of

the variables important to optimum function No 9 are also important in the
relative importance vector. Furthermore, the relative importance vectors
for the 9 and l2-dimensional case are quite similar. This is encouraging in
that it leads one to believe that the mechanisms upon which the algorithms

are based are generally similar. Clearly, the 12 dimensional algorithms
illustrated in Figure 7.9 must include some elements pertinent to the
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prediction of time-to-failure which are not included in the 9-dimensional
algorithm. Examination of these two figures shows that in general the
higher dimensional algorithm does not rely as heavily on the rain flow,
the 12-hour average temperature or the flows in Zone 2.

Although the successful development of this time-to-failure algorithm for
the atomizing steam boiler is not sufficient to insure that time-to-failure
algorithm can be derived for all failures which are identified, it does show
the timeto-failure algorithms are feasible and can be derived for at least
some of the failure modes. The system utilized to implement these

maintenance algorithms must be designed to operate both with and
without this time-to-failure information.
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FIGURE 7.2 - FIRST OPTIMUM FUNCTION TIME TO FAILURE BASE
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FIGURE 7.3 - SECOND OPTIMUM FUNCTION TIME TO FAILURE BASE
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FIGURE 7.4 - SCATTER PLOT OF FIRST TWO COEFFICIENTS OF GENERALIZED FOURIER
SERIES REPRESENTATION OF CASES USED TO DEVELOP TIME TO FAILURE ALGORITH
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RELATIVE IMPORTANCE OF OPTIMUM DIRECTIONS TO PREDICTING TI LURE

FIGURE 7.5

RELATIVE IMPORTANCE SPECTRUM FOR VECTOR (1)
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FIGURE 7.6 - NINTH OPTIMUM FUNCTION TIME TO FAILURE BASE
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FIGURE 7.7 - RELATIVE IMPORTANCE OF MEASUREMENTS FOR PREDICTING TIME
TO FATLURE USING 8 DIMENSIONS .
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FIGURE 7.8 - RELATIVE IMPORTANCE OF MEASUREMENTS TO PREDICTING TIME TO
FAILURE USING 12 MEASUREMENTS -
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APPENDIX A

FEATURES OF ADAPT ANALYSIS

The unique aspect of the ADAPT approach to empirical data analysis is pre-
ceding the analysis with the derivation of the optimal representation for the
particular data set. The ADAPT programs provide a unique capability for
determining this optimum representation for large data sets. However,
regardless of the size of the data set, the availability of this optimum repre-
sentation provides many significant benefits to any further empirical analysis.
These benefits include: 1) definition of which variables dominate the variation,
2) ordering of the data by its general usefulness for extracting information,

3) reduction in the computation required to perform further analysis, 4) re-
duction in the amount of learning data required to perform any given analysis,
5) an improved ability to establish performance and validity criteria, and

6) the ability to perform special functions such as clutter subtraction and
extrapolation.

The availability of the optimum functions for representing any given data set

is analogous to having the governing differential equations for a classical physics
problem. These optimum functions provide information regarding the nature of
the physics which govern the phenomena associated with this data. In particular,
these functions will define exactly where the greatest and most highly correlated
variation from case to case occurs. This information can be extremely useful
in selecting data to be used for the analysis and in understanding the mechanism
governing the phenomena which produced this data.

In addition to simply having the optimum functions for representing the data,
these functions are ordered such that each function explains successively less
variation in the data. This provides the user with a capability to reject variables
in an intelligent rather than a random manner, if the resources or available
learning data require the use of fewer dimensions than would naturally be used
to describe the data. This ordering allows one to throw away those variables"
which explain the smallest amount of variation and therefore in general should
be least useful to any analysis. Although it might be more desirable to be
selective based on the particular analysis to be performed, this is not usually
possible until after the analysis has been performed, when it is obviously no
longer useful. Thus, it is almost axiomatic that the apirori rejection of data
for a particular analysis cannot be based on that particular analysis, so the
rejection based on explained variation is an attractive approach to eliminating

- data when realities of the resources or available learning cases makes such an
elimination necessary.

Regardless of any prior decision to reduce the dimensionality, the ADAPT
approach to any real problem will automatically lead to a significant reduction

G
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in dimensionality. When the information energy curves which are produced
by the ADAPT programs are examined, it is almost always possible for the
analyst to select some dimensionality after which it is inconceivable that
further useful information is incorporated in the data. This criteria alone
usually results in a reduction of dimensionality of more than an order of
magnitude.

A reduced dimensionality obviously allows one to perform computations with
smaller computer capabilities. Furthermore, the orthogonality of the optimum
representation also provides simplifications in the computation. For example,
in the optimal ADAPT space one can in some cases derive the Fisher discrim-
inant without inverting the covariance matrix. This combination of reduction
in quantity of computation required and simplification due to orthogonality also
makes it feasible to update classification and regression algorithms in real
time for cases where this might otherwise be impossible.

A more significant aspect of the lower dimensionality of the learning space
follows from the requirement that the amount of learning data be large com-
pared to the dimensionalty of the learning data. This requirement arises

from the situation analogous to fitting a third order polynomial through a
series of points. If the third order polynomial is to be fitted to three points,

it will always fit perfectly and no physical relationship need be involved. How-
ever, if the third order polynomial is to fit a hundred points well then one
knows that this third order polynomial must be related to the data in some
physical manner. The same is true for empirical analysis in general. If

the number of dimensions of the learning space is equal to the number of learn-
ing cases one can expect most empirical algorithms to provide a perfect fit to
the learning data. However, this fit is normally based on differences between
the population and the sample statistics and is not based on the physics of the
problem. Experience has shown that the number of learning cases required to
derive an empirical algorithm varies from 2 to 6 times the number of dimensions
of the learning space. Thus, the usual ADAPT reduction of an order of mag-
nitude or more in dimensionality of the learning space translates immediately
into an equivalent reduction in the requirement for learning data. Since obtain-
ing learning data is one of the most expensive aspects of empirical data analysis,
this attribute of the ADAPT approach is often sufficient by itself to make the
difference between feasibility and infeasibility of solving a given problem.

The ADAPT representation also provides an opportunity for establishing a
necessary, although notsufficient, validity criteria. Validity criteria provide

a method of determining whether a particular test case is from the same popu-

" lation as the learning data, and therefore determine the validity of applying

the algorithms derives on the learning data to that particular test case. The
ADAPT validity criteria consists of comparing the length of the test data vector
in the original data space and in the ADAPT optimum space. If this transforma-
tion from the original data space to the optimum space results in a shortening



of the test data vector by a factor considerably greater than the shortening
which the learning data vectors suffered, one has an indication that the test
data and learning data are from different populations. In addition to providing
this validity criteria, the ADAPT programs have beendesigned to calculate
performance criteria as part of the learning process. These performance
criteria provide the analyst with a basis for immediately evaluating how well

he can expect a given algorithm to perform on test data. The ADAPT programs
provide the analyst with both the performance criteria and the experience factor
required to determine whether the algorithm derived is overdetermined. If

the algorithm is overdetermined, the analyst must adjust the dimensionality

of the problem or increase the quantity of learning data to derive a physically
meaningful algorithm.

The ADAPT approach of obtaining the optimum representation of the data prior
to performing the analysis introduces the capability to perform clutter sub-
traction on the data prior to performing the analysis. The clutter subtraction
can be used to eliminate any characterizable aspect of the signature from the
data histories. This is accomplished by subtracting the coordinate directions
corresponding to those characteristics to be eliminated from the space prior
to the optimization procedure. Another unique capability resulting from the
optimum representation step is the ability to do an extrapolation making use

of both historical data from previous data histories and the available portion
of any given data history. Conceptually this is equivalent to utilizing historical
information to guide the interpolation over missing data points.

In addition to these advantages which accrue from the optimal representation,

the ADAPT programs have been operational since approximately 1965. They

have been applied to a great many different problems, and during this period

part of the practical pit falls associated with empirical analysis have been
encountered, overcome and the programs improved to take advantage of this
experience. This experience has also provided Avco with the understanding

of what diagnostic outputs are required to enhance the ability of the analyst to
develop the required algorithms, and to provide the data necessary to reintroduce
the physics to the problem at as many points as possible. The key areas where
the physics may be reconsidered as part of the analysis are: 1) at the time of
data selection and preprocessing decisions; 2) after the development of the
optimum representation,it may be examined to insure that the variation is con-
sistent with the expected variation based on the physics of the problem; 3) after
the development of the algorithm, the relative importance vector may be examined
to determine if the variables which appear important to the decision are con-
sistent with the analyst's understanding of the physics and the relative importance

" spectrum may be examined to determined if the difficulty in obtaining the algo-
rithm is consistent with the difficulty which would be expected based on the physics
of the problem.

In summary, the capability to find the optimum representation for large data
vectors has been combined with many years of experience in using this representa-
tion as a preliminary step preceding empirical data analysis. This unique



combination has been used to prepare a set of computer programs for per-
forming empirical data analysis. These programs provide the user with a
fast and economical way to generate simple empirical algorithms for
classification, regression, clustering and extrapolation and/or analysis

of any given set of learning data.
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APPENDIX B

OPTIMAL ORTHOGONAL EXPANSION FOR TWO FUNCTIONS

We wish to carry though the ADAPT expansion of each of two given functions in the
series of the optimal orthogonal functions defined by these two functions, as

described in the Introduction.

Suppose we are given the functions uj(t) - and up(t) of the independent variable ty

over some domain ’°1$. t 5 tg. Let the functions be norrrialized, so that

L 3
fulat = (uidt =
Then the only parameter is the product integral
,c_zgu\u,,d‘t) EARN

the last inequality being Schwarz' inequality for normalized functions.

First we construct an orthonbrmal set of 2 functions Vi Vo from the glven ones

by the Gram-Schmidt proceduref=< These functlons are easily seen to be
' l v
-U" ol u\ N 'JL- = (u\," c\*l)/ l"’t/

We now find the expansion coefficlents of uy, Uy in a series of Vl’ Vo'

< | =0 =' z|{l-at
=l ¥ ), Xuse | % z|l-e

* Note that the Gram Schmidt procedure represents the continuous function Ui(t)
by two discrete components, which may be treated similar to the components
of the ADAPT ‘data vectors.
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The optimal orthogonal functions are now obtained by finding the eigenvalues

and eigenvectors g of the two-by-two matrix

Sz = ‘:"w.’t * AL J.A

(the factor in front corresponds to weighing by dividing by the number of functions,

in our case 2.) They are easily found to be

)\‘z—;j(l-\-lcl) ) Xz:-‘—[l-lcl)
LW de (o)

The eigenvectors are the expansion coefficients of the optimal orthogonal functions

hy, hy in a series 1n MK Voo i.e.,

)\L: A,V + 32V ; A, ':(d:.\) diz)

- by

Returning to the original u Ffunctions we find the agsociated optimal functions
to be

X_ = M2 (.u,+—'-t'—-u;.,) ) .'._B-(u,- """‘*1)
9

r" )<l e

and the expansions of the u functions in them are
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It is sufficient to discuss the case of £ 2 O because if £< 0, a change in the sign
of uy returns to the first case. We note that the optimal function hl is proportional
to the average of the input functions. The average is intuitively the best single
function to represent two functions, so we see the best single function is associated
with the larger eigenvalue )\1. The optimal function associated with )\z is

proportional to the difference of the given functions.

Az e oz fwwdb ¢ |

We also note that
A¥ AT

The decrease in the eigenvalue from the first to the second is the product integral
of the two functions. If the functions are closely correlated one would expect &
to be near unity, and )st would be much less than )\l . But if the functions are
nearly uncorrelated one would expect o to be small, and there is only a slight
decrease in the eigenvalue, going from the larger to the sﬁaller. Thus the rate

of decrease of eigenvalues can be associated with the degree of correlation of

the input functilons.
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APPENDIX C

PERFORMANCE EVALUATION OF FISHER DISCRIMINATE
1.0 INTRODUCTION
The task of developing useful empifical algofithms may be divided into the
following three parts:
1. Gencration of the algorithms,
2. Performance evaluation of the algorithm, (i.e. a goodness
measurement for the algorithm), and
3. Establishment of the validity of applying the algorithm

to the test data.

In the ADAPT programs, the rnoét common technique for developing empirical
classification algorithms is the use of fhe Fisher linear discrinimant. This

has been found to be one of the most useful techniques for generating classi-
fication algorithms. It is applicable to non-Gaussian data. For Gaussi-an data
it is possible to define various optimum classifiers including various maximum
likelihood separations, optimp.m quadratic cla'ssifiers, etc. However, experience
has shown that Gaussian data is very rére in nature. For non-Gaussian data
linear classifiers have the advantage that for sufficiently large data spaces the
dot product‘operation normally falls within the criteria for application of the
Central Limit Theorem and therefore ;')r’oducesrprojection' values which have
Gaussian distribution even when the input data is not Gaussian. This phenomena
allows one to significantly imprové the performance evaluation of the algorithm.
Another advautage of the linear classificx' is the extremely simple format making
it easy to implement either as a subroutine in a larger program for use on 2

digital computer, or in a special purpose computer.
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The classical approach to establishing the validity of applying a given empirical
algorithm to test data is to reserve a certain portion of the available data as

test cases. The algorithm is then developed using only that portion of the
available data designated as learning data and then applied to the independent
proof data. When the amount of data available is limited, which is usually the
case, one technique which is often used is that known as 'holding one out'.

In this technique one case is removed from the data set and the remaining

cases used ‘to develop the algorithm. Thé algorithm is then tested on the one
‘remaining case and its performance noted. This case is then added back into

the learning set and a different case withheld and the procedure repeated. Since
in general algorithm development is considerably more expensive then testing,
this approach is more expensive to implement than thé approach of retaining

a large proof test data but it does allow one to perform the evaluation using a
smaller set of data. It should be pointeé out that this classic}alﬁ appr_oach is neither
necessary nor sufficient in a»rigorou's sense for ensuring the applicability of the
algorithm to a new set of dat-a. In particular, care must be exercised in selecting

the independent proof sample such that its selection reasonably models the selection

of the entire sample from the population or universe of data.

The ADAPT programs in addition to prqviding the capability to implement this
classical approach to establishing the validity of applying the algorithm to the
test data, also utilizes a validity criteria to test each individual history for
similarity to the learning data.. If the test case is not sufficiently similar to
the learning data thern one cannot feel confident in applying an algorithm derived

on the learning data to this particular test case. The ADAPT measure of similarity
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is the relative reduction in explained variation as one proceeds from the

original data space to the optimum ADAPT space for the test data case as
compared with the learning data cases. Clearly it is necessary, but not
sufficient, that the test case be adequately represented in the ADAPT base
derived from the learning data for any empirical algorithm to be valid. The
ADAPT programs furnish the user with information to judge the degree of
similarity which is required between the learning and test data. The ADAPT
programs generate as part of the algorithm devslopment a relative importance
>spectrum which defines how much of the explained variation is required to
develop a meaningful algorithm. One criteria is that the representation of

the test case on the learning base must explain at least as much variation as
explained by the firsf "L" terms of the representation. Here ""L' is defined

as the maximum number of terms required to include a;ll of the important terms,
a defined bf the relative important spectrum, for the particular algorithm being
analyzed. A simpler, but significantly less rigorous criteria which is often
used is that the minimum representation of the test case must be greater than
the minimum representation observed on any learning data. Clearly, this re-
quirement is a necessary but not sufficient requirement to ensure adequate

representation.

The preceding portion of this appendix has reviewed the ADAPT approach to
the generation of algorithms and to the establishment of the validity of applying
the algorithm to a given test case. These have been quite general and are
applicable to a large number of-linear discriminants. The remaining sections

of this appendi’x will develop procedures for evaluating the performance of



separation algorithms derived using the Fisher discriminant. The great
majority of ADAPT classification problems are solved using the Fisher
discriminant. The procedures for defining its performance have been re-

fined considerably further than for other discriminants included in the ADAPT
programs. In general, these procedures could be used as a guide for establish-
ing performance measures for many of the other discriminants included in

the ADAPT programs. The following discussion is divided into two parts.

The first part, discussed in the next section, is that of establishing a thres-
hold for the‘ADAP-T algorithm to achieve a special goal. The second part,
discussed in the last section, is the measurement of the performance of the

algorithm with a given threshold.

2 0 SETTING OF FISHER THRESHOLDS

The approach to setting the threshold to be used to classify the projection
value obtained from applying the Fisher discriminant is based on the anaiysis
p?esented by Anderson and Bahadur in Reference 1. Strictly speaking, this
analysis requires that all possible pfojection vectors produce Gaussian pro-
jections. In general, this is only true if the input data is itself Gaussian. For
the great majority of projection directions, in particular those directions which
are normally ;ietermined by the application of the Fisher discriminant, the
Central Limit Theorem will result in a Gaussian projection. Thus, although
the theory is not rigorously applicable, it is usué.lly applicable to a large per-
centage of the possible projection directions when the data space is sufficiently

large to invoke the Central Limit Theorem. Thus, one suspects it may still



be a valid guide as to the selection of the Fisher weighting parameter and
the threshold to be used with the Fisher discriminant. Experience with a

great variety of data has shown that this is indeed the case.

Reference 1 shows that if one desires to minimize total number of errors
made by the Fisher classification algorithm one should select the Fisher

weighting parameter, P, according to the following relation:

Ao WIS ‘E\ c—-—-

! \‘\ N v T (1)

where 77, and 3 are the standard deviation of the projection values of
the first and second classes respectively. Assuming that the origin has been

selected mid-way between the means of the projection values of each class

the threshold, TH, is given by:

— LoPyVY

| B (s~ P /
(2)

Another criteria which one may wish to use, rather than minimizing the number
of errors, establishes an algorithm which will achieve a desired false alarm
rate. This special case is also discussed in Reference 1. Suppose one desires
a probability §N' that there will be no false alarms in Class 1 when N Class |
cases are examined (i.e. no Class 1 cases will be classified as belonging to

Class 2.) The following relation will define the false alarm probability for Class

1, Pra:

| /31: N: S
Q\ \FAB, N
' (3)



Solving this cquation for the probability of false alarm for Class 1 under the

assumption that Py = is equal to 0.5 gives:

—

i ‘ 0y
F— o= \ - e/\}( P -(\/Q"v“‘ ?‘\,\ / I\I ) s 9.._....'b q (4)
£ N—o = N

Once the desired false alarm rate has been defined, Reference 1 shows that

the proper Fisher weighting parameter to achieve this false alarm rate is

given by:
a r)ﬂ \
P o £ (1= T
Yo o | \— 1 )
\ (5)
1 ‘
where G is the variable in the cumulative standard normal distribution
function of the probabilitv 1 - P_.. The corresponding threshold is given
Lo
by:
0. nu- QT L
‘\\‘\'/J\gldl (6)

-

where ))\ is the mean of Class 1 and V{ is the standard deviation of Class

1.

The above equations, although strictly 'valid only for the case of Gaussian
data, may be expected to give a good approximation even in thercase where
the data is not Gaussian, when the data space is relatively large. Experience
with the utilization of these equations in a large number.of real problems has

verified that they do provide a good guidance for the selection of both the
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Fisher weighting parameter and the best threshold to achieve either the

goal of minimum errors or a predefined false alarm rate.

3.0 PERFORMANCE MEASURES
The simplest measure of the performance of a linear classification algo-
rithm is to examine the projection values actually obtained on the learning
and/or test data by applications of the discriminant. The ADAPT programs
present a bar chart plot of these projeétion vah};es for each of the learning
cases, which can be used to visualize the performance of an algorithm on
the learning data. However, these plots are extremely inconvenient for
evaluating a large number of algorithms. | Although the information required
to determine the trade-off between detection probability and false alarm rate
is on these bar charts, they are not very convenient for visualizing this trade-
off. The most desirable way to evaluate the performance of a large number
of algorithms is to obtain a single number which mezsures the quality of- the
algorithm. Since the Fisher discriminant is the result of a maximization of
the quantity V, which can be defined by |
\ ’U\'/U-z"z '

Ve i |

Pt (-Pot ()
\ TV Yy

it is clear that the maximum value of V is itself a good measure of the per-
formance of the algorithm. The maximum value of V, over all possible pro-
jections, turns out to occur when the denominator of Equation 7 is equal to

the square root of the numerator, which means V becomes, geometrically,



the distance between the means of the projection of the two classes on
the Fisher direction. Thus for the Fisher discriminant Equation 7 provides
a relationship between the projection of the means of the two classes, the

standard deviation of each class, and the Fisher weighting parameter.

It is inte resting to consider the special case in which the standard deviation

of each of the classes is equal. For this case,

~ - \

<,

T T 2y \

(8)

and

(TaTy o = 2/ 9)

Thus the special case of equal standard deviations allqws us to get a good
phvsical combprehension of the narameter :?/(—\? . This parameter is used
as a measure of the goodness of 'performance of the discriminant. Regardless
of the relationship between the standard deviations of the two classes, tfxe
smaller this parameter '(therlarge'r V) the better the performance of the algo-
rithm. In the particular caée_ wher‘e' the standard deviations of both classes
are equal this parameter is justrveq‘ual to the sum of the standard deviations®
divided by the- distance between the mean. The resulting simplification is very

instructive for both methods of setting the threshold.

For the case where one wishes to minimize the number of errors, the situation
is shown in Figure C-1. The threshold is set half way between the mean pro-

jections of the two classes, becausc the criterion requires that the errors for

c-8 e,
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the two classes are the same. Thén the probability of error is the shaded
Area A, which is the value of the cumulatiw;e--normal distribution centered
on Jx, , upto M -V/2. IfG is the standard cumulative normal distribution,
this is

¢ ' — | '
T - C,'\‘t_[_‘>: G( w-:..-') (10)

¢
P_ is the probability of making an error in either class, and

E

P.=1-P - (11)

is the probability of correctly identifying a member of either class.

For the case where one wishes the maximum detection of Class 2 for a
specified error probability PF.IA of Class I, the threshold is set by Equation
6. Again, for equal standard deviations the situation is quite simple, Take
the zero of projections half way between the mean projections of the two

classes. Then ,lll = V/2, and Equation 6 becomes

TH=+V/2—($"T_' : (12)
or 1 < :
R =(viz -TH) /O (13)

This is the standard normal deviate at which
I I ' ' :

II
The detection probability P

D of Class 2 is the area under the normal
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curve centered on A, ==V/2 up to TH. The normal deviate for this curve

at that point is

@H: (TH + V/2) (15)
and
11 _ S1I
PD = G % ) (16)

But TH can be eliminated from (13) and (15) to give

. ) ! 2 T . :
RE-W 1 = == - G (17)
,\ >/(V

Thus for the case of equal standard deviations, the detection probability

of Class II depends only on the false algrm probability of Class I, and the
Fisher maximum through Z/W. Figure C-p presents these ROC curves

for various values of parameter 2/ {_{f Thus we see that the parameter Z/W
'is useful for both visualizing the bar charts of the performance of the algo-
rithm as well as for visualizing a Receiver Operating Characteristi;: for this
particular algorithm. It thé‘x"efore has consideraﬁle intuitive value for rapidly
judging the performance of the classification algorithm. For these reasons

it is used in ADAPT as the parameter for evaluating the performance of the
ADAPT derived Fisher discriminant. In addition to obtaining an understanding
of the trade-off between detection probability and false alarm rate, itis
important to have a measure of algorithmrpt;rfcrarmance to evaluate the effect
of dimensionality of the space .in which the algorithm is derived. This is

extremely important since the use of too large a dimensionality in the derivation

of an algorithm will result in the algorithm being derived by fitting the learning
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data according to special characteristics of the particular learning sample,
and not according to characteristics of the population sample. That is,

the major basis for the separation will be the difference between the popula-
tion and sample means, rather than the difference between the means of the
two populations being classified. This phenomena is quite an analogous to
the fitting of a third order-polynomial through a set of data. If a third order
polynomial is fit to 3 data points, there is no reason to believe that a general
law has been derived. However, if this same third order polynomial makes
a reasonably good fit to 100 points, there is little doubt that these 100

points are related by some phenomena which is well expressed by a third

order polynomial.

Thus, it is important to understand the capal_)ilities of a Fisher discriminant
to derive classification algorithmé simply on the difference between sample
and population means. In many years of ADAPT experience, this was evaluated
by performing separations of odd cases vérsus even cases fr‘or;n both classes
for each préblem being 4considered. - The performance of these separations
were then compared with the perfo’rmance of the classificati‘on algorithm de
rived between the desired classes. If the algorithm derived for separating
the odd versus even gave a similar performance to the desired algorithm then
one concluded that the algorithm was not based on physical characteristics but
rather on the differences between the sample and the population means. This
experience can be summarized in a plotvsuch as presented in Figufe GC-3.

This figure plots the number éf cases divided by the number of dimensions

versus the performance measure obtained for separations of odd from even
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(i.e. random separations) for a large variety of problems and data. The
extrapolation of this curve for low values of the performance measure was
accomplished by making a similar plot on a linear scale and noting that for
a number of cases over number of dimensions of unity the performance
measure should to go 0. It is intcresting to compare Figure € -3 with the
results of a similar analysis presented in Reference 2 indicated that when

a number of cases to number of dimensions exceeded six, one could have
confidence in the performance of the algorithm, Figure {~3 clearly shows
why this is .the case. Remembering that we may relate 2/ \l—'\; to the proba-
bility of error we note that for a performance measure of 2 thé probability
of error is approximately one in three. Since a random process for selecting
a class has a probability of error of one in two, it is clear that an algorithm
- whose performance measure is two or greater is probably not of very great
interest. Thus this curve shows that any algorithm of interest derived in a
space such that the number of cases divided by the number of dimensions is

greater than six lies to the left of all of the data shown in this figure.

A performance map can be defined'which combines all of the characteristics

of this performance measure into a single plot. Figure (-4 presents a sample
of such a plot. The ordinate of this plot is the ratio of the number of cases

to number of dimensions used to derive the algorithm: The abscissa is either
the performance measure or the probability of error depending which scale

we wish to read. Thus when an algorithm is derived using the Fisher discrim-

inant it may be placed at some point in this figure simply by noting the number

C-12
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of cases used in the learning data, the number of dimensions of the space

in which the algorithm is derived, and the performance measure for that
algorithm. All of these parameters are available in the ADAPT output for
the deviation of the Fisher discriminant. If the algorithm occurs to the right
of the cross-hatched regio_n in this figure, one knows that it cannot be
applied to test data and is not a general algorifhm. If it falls near but

to the left of the cross-hatched area, one realizes that the performance

of this algorithm on the learning data is significantly better than one can
expect on the test data. Only if the al.g;)rithm falls to the left of and reasonably
far away frocm this cross-hatched area does one have an algorithm whose
learning data performance is indicative of the performance which can be

expected on a test case.
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APPENDIX D

PROCEDURE FOR IMPLEMENTING VALIDITY CRITER]A

The validity Criteria jg that the value of QK Mmust exceeqd QK

o - 2l
‘k-

~-Min,. where

(1)
—\ N
2 Vo
— VeV,
A
and
. T
Y = 2 (Vecfor—j) V.
LK A 4K (2)
A

QK-Min 18 determineq by analysis of the learnmg and/or Proof test dats The'
er'rKrare the COmponents of the test cage being evaluated ang the Vector- / are
8iven in Table p.-
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APPENDIX E
EQUATIONS FOR UPDATING THE FISHER DISCRIMINANT

Desired Algorithm:
T

We = Ar Vo +C (1)

4

L
To update %’lgorithm, desire to use new learning histories, VL,K , to
compute A ¢
.
Step 1: Transform Learning Data, \/‘;’ " , to optimum space
‘ )

You = Hig <V;..< - Vm) (2)

KMAX Kz}

Where:
L
Yﬂ K Components of learning history "K' in
: optimum space
Hi—l = Transformation matrix derived by ADAPT
representation programs and supplied by
Avco on "H-Tape"
AL =1,2, . . . . . . No. of Meas. used
£ =1,2, . . . . . . Dimensionality of Optimum Space
K =1,2, . . . . . . No. of Leérning Cases
<
Step 2: Derivation of Fisher Discriminant, AQ » in optimum space

A: - D;; [wu_ w:a.j

Dee = % Bt (-%) By,

.f = Input = Fisher Weight Parameter

-

E-1



Cy
|

. . LC
YL(z_Wc& Y(’M;—\,\/

! -Gy Cy Lqy W <,
Uﬂ T Wima M Irean,m, Revay
Mmax, | * A

- VAR-COVAR Matrix of Class j in optimum
Space!

Z
e}

o
¢}
3
e
I

= \(—(.K Assigned to Class j

3 =1, 2

No. of cases in class ]

M
[

\
M& K=Kg Y‘QK

-~
Fad
|

=
Ay

£,
O~ -
"

Note: K j=1

o =(1 for j =
(’Ml+1forJ:2—

Step 3: Transform Fisher Discriminant back to data space:

P\i = Mg Ack

Step 4: Find C=-TH. . . . . Where
TH = Fisher Threshold Determined as Described in Section 2 of
Appendix C
E-2

Lw



